Archivos de la categoría Sintético

Tubo corrugado PVC

Síntesis

Este tipo de teja de vidrio fotovoltaica está hecha de vidrio templado,

Es un tubo termoplástico, destinado a los grupos de canalizaciones curvables, utilizado para las instalaciones de sistemas eléctricos de uso empotrado, cumpliendo la función de protección y aislación para que no se emitan corrientes de fuga , brindándole aislamiento térmico, soporte mecánico y protección contra la degradación.
Se encuentra compuesto por una mezcla de distintos materiales: PVC, estabilizantes térmicos, lubricantes de plástico, carbonato de calcio, acrílicos y pigmentos. Luego de almacenar la mezcla, pasar por la extructora que moldea su forma, el enfriamiento, rotulado, corte y análisis. Pasa a estar a disposición de ventas y distribución a los distintas empresas y locales que comercian con el público. Es un producto proveniente de los polímeros, No renovable y degradable.

Contexto histórico, social y económico

En 1935 Von Liebig fue el primero en descubrir la aparición de monómero de vinilo pero no logro encontrar su utilidad por lo que derivo a Regnault Henry V. a investigar sobre el mismo quien tuvo su primer hallazgo del pvc. Mas adelante el científico Eugen Baumantiene su aparición del material por medio de la exposición solar del mismo. Pero ninguno de estos científicos pudieron encontrar una utilidad exacta y beneficiosa para el pvc.
En 1912 Fristz Klatte busco un nuevo descubrimiento sobre el, reaccionándolo y levándolo a la tranformacion de un un Clorulo de polivinilo, pero dejándolo estar, sin saber que hacer con el producto este se polimerizo.
El pvc es un polímero cuyo uso industrial comienza durante el siglo xx. En 1923 Waldo Samon ingreso en la compañía química BF.Goodrich con el objetivo para encontrar una sustitución para el caucho natural, debido a su costo y y gran demanda del mismo por la explotación automotriz. Hacia 1926 surgieron las primeras pruebas pero sin estar satisfecho por las características que obtenia del material y luego de una mejora para el caucho se finalizo una solución y creación de un sustituto sintetico. Allí fue el comienzo de la industrialización de el pvc por primera vez, a mediados de la segunda guerra mundial.
Los primeros productos de pvc industrializados fueron pelotas de golf, zapatos de tacon, cortinas de baño y en escencial Cables y asilaciones.
Es un material termoplástico, de bajo costo, con las características de durabilidad, resistencia mecánica, aislación térmica, y un gran desarrollo en la capacidad eléctrica, es el segundo polímero de mayor producción del mundo, compite con la madera y el aluminio en la fabricación de ventanas, aislaciones y propiedades.
Tiene una innovadora capacidad de distintos acabados, Puede ser flexible, cuya mezcla es granulada y se tranforma por extruccion de tiras y planchas y se utiliza en distintas aplicaciones como: puertas flexibles, cortinas, panees aislantes, toldos, juego de luces, amortiguadores de impacto.
Donde se presenta una característica de flexibilidad, aislamiento térmico, acústico, resistencia y bajo costo.
Por otro lado obtenemos un PVC rigido, de estructura amorfa y grandes propiedades mecánicas, resistencia al fuego, aislante térmico y eléctrico con capacidad de soldar y pegar.
Podemos encontrarlo en distintas aplicaciones como :tanques de agua, tuberías de presión, piezas de instalaciones, conductores eléctricos y muchísimas mas. A lo largo de su historia se tranformo en un material muy versátil con distintas utilidades en variadas áreas de trabajo y disciplinas . La mas destacada es la CONSTRUCCION, con la sustitución de maderas y aluminios en carpiterias y aislaciones, y en distintas instalaciones como de flujo de agua y cloacal y en el caso destacado en las instalaciones eléctricas como material de protección y aislación termica de los cables detrás de los muros, siendo resistentes a la humedad y agentes nocivos de degradación y a el fuego en caso de incendios.
Otras áreas y disciplinas que involucran al pvc podrían ser en el embazado de productos y alimentos ( bolsas, blisteres, capsulas) en la área de medicina ( bolsas ultravenosas, y recubierto de empaquetado medicinal) Agricultura ( para la bolsas y canales de riego) . Es un material con mucho beneficio y demanda industial.
El PVC está compuesto por Cloruro de sodio, proveniente de la sal, rica y abundante en la tierra, debido a la gran proporción de aguas marítimas y manantiales que contienen grandes cantidades de sal. Por otro lado existe la minería de roca halita.
Otro compuesto de dicho material, es el Etileno un derivado del petróleo, con una extracción costosa debido a el uso de grandes tecnologías para su obtención y con un gran valor de explotación en la tierra, ya que es un materia muy beneficioso para distintas tipos de materiales industrializados.
Sabemos que el pvc es un material NO ecológico y con una gran tasa de consumo industrial.
Para poder controlar estos numerosos residuos, se realizan distintos métodos de reciclado y asi poder mejorar la relación residual – ambiental.
RECICLADO MECANICO: mediante el picado, tamizado y triturado para la nueva producción de distintos producto de industria.
RECICADO QUIMICO: consta de la ruptura de moléculas para crear nuevos polímeros o sustancias básicas.
Y por ultimo la INCINERACION de productos que al ser quemados liberan sustancias toxicas, y distintas dioxinas como gases de clorhidico, principalmente Oxido de Azufre que deben ser neutralizados (cal) antes de su emisión a la atmosfera (1k pvc incinerado = 0.5 flexible 1,5 rígido).
En la hora de fabricación del material, se le agregan distintos aditivos para mejorar las propiedades del mismo. Estos son Estabilizantes de plásticos que contienen Plomo y Cadmio, reconocidos por ser muy toxicos y nocivos para la salud humana. Por otro lado encontramos los Plastificantes compuestos por Ftalatos y Adipatos, que en el momento de degradarse producen daños para la salud.
Estos productos se realizan mediante el proceso de POLIMERIZACION del pvc en lugares cerrados para evitar la contaminación de gases que se producen durante la producción del material. Para ello se produce previamente un control de emisiones acompañadas de medidas de protección para los trabajadores y el medio ambiente.

Definición ciencia

Este material esta compuesto principalmente por PVC clórulo de polivinilo, una combinación química de carbono, hidrogeno y cloro. Proveniente de clorulo de sodio y petróleo o gas natural; al que se le adjunta el carbonato de calcio CaCO3 el cual mejora las propiedades del material, Estabilizantes Thermolite 190 y 191 para disminuir la degradación, Lubricantes para plástico mejora la resistencia de las moléculas del material y reduce la flexión, Acrílicos para el desarrollo de las propiedades mecánicas y distintos pigmentos para el color del material e identificación.

Procesamiento

Para obtener este material, se crea una mezcla con distintas materias primas.
PVC clórulo de polivinilo, extraíble a partir del craqueo de petróleo bruto (43%) y sal (57%), Esta materia prima se realiza mediante una polimerizacion de monómero de clorulo de vinilo, Carbonato de calcio extraido de rocas calizas, lubricantes y pigmentos, derivados orgánicos e inorgánicos.
Luego son depositados en los silos de almacenamiento donde son trasladados a los extrusores que calientan el material y generan la forma del mismo mediante moldes corrugados. A partir de ahí pasan a la fase de enfriamiento por medio de aguas a bajas temperaturas que definen y sellan la estructura y forma del producto. Luego son enviados a depósitos de chequeo para analizar la calidad y resistencia del objeto y una vez sido evaluados y aprobados mediante normas y evaluaciones se depositan en sectores de almacenamiento de mercadería para asi poder ser trasladadas a distintas empresas distribuidoras o locales de venta al público y a partir de allí ser puesta en obra en construcciones.

Propiedades

Normas

UNE-EN- 61386-22Sistemas de tubos para la conducción de cables. Requisitos particulares. Sistemas de tubos curvables.
IRAM 62386-1Sistemas de caños y accesorios para instalaciones eléctricas de baja tensión y complementarias
NTC 3363Plásticos. Tubos de poli(cloruro de vinilo) (PVC) rígido corrugados con interior liso para proteger conductores eléctricos y telefónicos
UNE-EN-61386-1Sistemas de tubos para la conducción de cables. Requisitos particulares. Sistemas de tubos curvables.
IRAM 62386-22Sistemas de caños y accesorios para instalaciones eléctricas de baja tensión y complementarias

Puesta en obra

Proveedores

SodimacPor color medida y diámetro
Rollos livianos y pesados x m

3/4 metros x 10 metros
Caño corrugadoTecnocom
Electricidad chiclana srl
http://www.maprin.com.ar/

Contacto: ventas@maprin.com.ar


Tel: 011 4201-8261
Distintas medidas
Rollos, 1x25m
1,14/25m
2x25m
7/8 x 25 m
En formato Liquido, por litro
Caño corrugadoElviplast
STRADA5/8
3/4
7/8
1
11/4
11/2
2
Por color ( naranja, azul, negro, blanco)
Caño flex
Tubo strada
Strada concrete
Strada ignifugo
Santa fe, ArgentinaSTRADA
GENROD1/x25 m x50m x100m
3/4 /x25 m
11/2 /x25m x50m
Tubo corrugado pvc flexibleArgentinaGENROD

Bibliografía

https://historiasdeempaques.wordpress.com/2014/02/09/policloruro-de-vinilo-pvc/
https://www.google.com/search?q=Garc%C3%ADa%2C+S.+2006%2C+Migraci%C3%B3n+de+plastificantes+de+PVC+tesis+Doctoral%2C+Espa%C3%B1a.+Departamento+de+Ingenier%C3%ADa+Qu%C3%ADmica%2C+Universidad+de+Alicante.+p+307.&oq=Garc%C3%ADa%2C+S.+2006%2C+Migraci%C3%B3n+de+plastificantes+de+PVC+tesis+Doctoral%2C+Espa%C3%B1a.+Departamento+de+Ingenier%C3%ADa+Qu%C3%ADmica%2C+Universidad+de+Alicante.+p+307.&aqs=chrome..69i57.1024j0j7&sourceid=chrome&ie=UTF-8
http://www.pvc.org/en/p/history
https://ahombrosdegigantescienciaytecnologia.wordpress.com/2015/09/10/el-inventor-del-cloruro-de-polivinilo-pvc-lonsbury-semon/
https://tupersa.com/wp-content/uploads/qr/ETP06-CRG_PVC_LE.pdf
http://www.junelec.com.ar/webfiles/archivos/tubelectric/SISTEMA_TUBELECTRIC-Catalogo_General.pdf
https://barmalopesa.com/categoria-producto/electricidad/tubo-corrugado/
https://www.ferromadrid.es/blog/la-historia-del-pvc
http://www.plastico.com/temas/PVC,-Cuales-son-sus-efectos-en-el-ambiente-y-la-salud-humana+3027117
http://www.stradasa.com.ar/
https://www.genrod.com.ar/home
https://www.editores-srl.com.ar/empresa/electricidad_chiclana

Membrana flexible EPDM impermeable

Síntesis

La membrana flexible EPDM impermeable, es una lámina de caucho de polietileno propileno dieno monómero, es un elastómero con muy buenas propiedades frente al paso del agua y a los agentes atmosféricos, con muy alta elasticidad y resistencia mecánica, esto lo convierte en un material muy indicado para la impermeabilización de todo tipo de superficies previamente preparadas, humectadas y limpias, en ocasiones se utiliza algún tipo de aditivo que refuerza la unión entre la superficie y la lámina. Sus aplicaciones son usadas tanto en el mundo de la construcción, apareciendo como impermeabilizante de techos, como en el mundo industrial, apareciendo en la industria automotriz, tiene la ventaja de poderse vender en planchas de gran tamaño, cubriendo así grandes espacios sin muchas uniones entre las láminas.

Contexto histórico, social y económico

Este tipo de material es particularmente nuevo, ya que el caucho sintetico data su origen desde 1961 aproximadamente, y esta membrana data su creación en Alemania y su lanzamiento al mercado en el año 1964 por el profesor K. Ziegler, su creación fue una investigación personal que desarrollo el profesor en búsqueda de mejorar las propiedades del polímero, aumentando su resistencia a la tensión, su resistencia a los agentes externos del medio y su capacidad impermeable. Este tipo de membranas se comenzaron a utilizar en el año 1980 en Argentina

El material fue descubierto cuando se buscaba mejorar las propiedades de un polímero, se obtiene como un tercer monómero, y resulta especialmente útil para el sellado e impermeabilización de superficies, surgió ya que en esa época había una producción muy grande en el mundo de los plásticos y estos empezaban a ser usado con más frecuencia y en un abanico cada vez mayor de materiales. Los cauchos de etileno-propileno se destacan por su resistencia al calor, oxidación, ozono y a la intemperie debido a su estructura polimérica. También tiene alta resistencia al desgaste físico, contando con una expectativa de vida útil de 50 años. Su amplio abanico de usos lo hace aparecer principalmente en juntas de hermeticidad para autos, burletes para vidrio, mangueras para radiador, jardín y riego, tubos, cinturones, aislante eléctrico, membranas para techos, aislantes para estanques, etc. En lo que serían los precios de las membranas, esta membrana es una de las más costosas, compitiendo con las que son de doble capa, sin embargo son mejores en cuanto a duración y su proceso de fabricación es barato y algunas empresas cuentan con el certificado, de que la producción del material no participo en la contaminación del medio

La membrana EPDM es un material totalmente inerte, cuya fabricación y su posterior utilización ejercen un impacto ambiental relativamente bajo, ya que para su producción se usan polímeros reciclados, y este al mismo tiempo es reciclable, además la temperatura de fusión que tiene que alcanzar esta debajo de los 200°c.

Definición ciencia

El caucho EPDM es un Polímero a base de Etileno Propileno Dieno Monómero. Está compuesto entre un 45% y 75% de etileno, siendo en general más resistente cuanto mayor sea este porcentaje.

Procesamiento

El caucho se obtiene de la savia de un árbol, una vez obtenido, se lava, se separa, se tritura, se granula y finalmente se deja secar en la planta procesadora, luego se lleva a cabo un proceso de extrusión parecido al del plástico. En el proceso de extrusión del caucho, como en la extrusión de plástico, el material es forzado bajo presión a través de un troquel o matriz adoptando así la forma deseada. El proceso de vulcanización debe ser llevado a cabo antes de que la parte o perfil de caucho sea utilizable. La vulcanización se realiza a una temperatura que varía entre los 200°c y 300°c, y este proceso tiene lugar en el último paso de la extrusión, dicho proceso ayuda a los perfiles y partes de caucho a mantener su forma y a adquirir las propiedades físicas necesarias. Luego se guarda en un depósito para realizarle un curado, y después se comercializa. Hay una amplia variedad de tamaño de membranas que abarca desde 1mx1m hasta 20mx20m y una amplia variedad de espesores que varía desde 5mm hasta 40mm, los formatos más vendidos en el mercado son los que van entre los 10 mm y 20mm.Una vez que se tienen todas las caras, se procede a soldarlas para obtener el contenedor sin puertas. Las aristas que se forman al unir las diferentes caras se apoyan con perfiles tubulares, con el fin de aportar un cierre de mayor resistencia. Con las puertas se procede de manera similar, solamente que las ondulaciones son un poco más suaves.
Por otra parte, el suelo, que es la cara de mayor resistencia del contenedor, está reforzado con viguetas metálicas. Una vez que ya se tiene el contenedor, se procede a aplicar una capa de imprimación para que la pintura se adhiera correctamente. Luego es necesario colocar un suelo de madera. Se cortan los diferentes paneles, se crean las estructuras, se barnizan y se le hacen los agujeros para proceder con la fijación.
Justo antes de finalizar todo el proceso, se colocan los sellos de impermeabilización en las puertas. Luego se impermeabiliza también la parte inferior de la estructura. Unos técnicos de calidad chequean que el contenedor cumple con todas las normas y en caso positivo el contenedor pasa a ser rotulado y etiquetado.

Propiedades

Normas

NormaTítulo
ASTM D 1149Standard Test Methods for Rubber Deterioration—Cracking in an Ozone Controlled Environment
ASTM D 624Standard Test Method for Tear Strength of Conventional Vulcanized Rubber and Thermoplastic Elastomers
ASTM D 751Standard Test Methods for Coated Fabrics
ASTM D 412Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension
ASTM D 471Standard Test Method for Rubber Property—Effect of Liquids

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
GRUPO AISLAR

https://aislarweb.com.ar/

contacto@aislarweb.com.ar
Membranas por metro
Burletes
Membrana EPDMEE.UUFirestone
MAPRIN S.A

http://www.maprin.com.ar/

Contacto: ventas@maprin.com.ar


Tel: 011 4201-8261
Membranas por metro
En formato Liquido, por litro
Caucho epdmLocalMaprin
TORREAR S.A
http://torrear.com.ar/

Contacto: ventas@torrear.com.ar


Tel:011 4314-5647
Membranas por metro
Formato liquido
Otros productos epdm
Caucho epdmLocalTorrear

Bibliografía

http://www.especificar.cl/fichas/membrana-de-caucho-rubbergard
https://albervima.es/portfolios/epdm-caucho-etileno-propileno/

Cable de acero trenzado galvanizado

Síntesis

El cable de Acero trenzado galvanizado está compuesto por alambres de acero (con un previo trabajo mecánico de trefilado) trenzados en torrones y vueltos a trenzar sobre el eje central del cable llamado alma, dicha alma puede ser otro torron o puede ser de otro material, textil .A estos alambres se los ha galvanizado previamente, generándoles mayor resistencia a la oxidación. Pueden conseguirse con facilidad en locales que vendan materiales de construcción y gracias a su alta resistencia a la tracción se pueden utilizar en puentes, teleféricos, ascensores, grúas, automóviles o camiones para transportar cargas pesadas e incluso en la pesca.

Contexto histórico, social y económico

-Se ha encontrado un cable metálico en las ruinas de Pompeya que se estima podría tener más de 1800 años. Mucho después, en Alemania, se utilizó cables trenzados rudimentarios de hierro para la minería llamados “Cables Albert”, por el nombre del oficial minero que promovía su uso. Aunque estos cables no eran muy resistentes a la tracción, pudieron reemplazar a las cadenas ya que estas tendían a romperse sin aviso. Pero debido a su fabricación artesanal no se llevó a otras áreas hasta que, entre 1849 y 1889, se implementaron las formas básicas de cables de acero que se siguen utilizando hoy en día en la construcción.
– En 1840 Andrew Smith, en Inglaterra, trataba de anclar los barcos al muelle utilizando cables de acero. Así, al abrirse el negocio del ferrocarril Blackwall, utilizó la técnica de las cuerdas de cáñamo en este negocio. Al mismo tiempo, otro inglés, Robert Newall, implementó la utilización de
maquinaria en lugar del torcido a mano, que fue probado con éxito en el negocio del ferrocarril, lo que los llevó a una disputa de patentes en 1845, pero terminaron fusionando ambas compañías, como Smith and Newall y continúan siendo una empresa de cables de acero hasta la hoy en día. Smith dejó Inglaterra para mudarse a California, mientras que el estilo del cable de Newall, que era fabricado de seis filamentos, cada uno con su respectiva fibra en el núcleo y todos retorcidos sobre un núcleo central, pronto dominó el mercado Inglés. Sin embargo, la mayor contribución inglesa a la industria, fue la idea de hacer los filamentos en la máquina trefiladora. Roebling introdujo las modernas trefiladoras de alta velocidad alrededor de 1850 y puso su atención en la construcción de puentes suspendidos, actualmente muy utilizados. En 1857 el hijo de Smith, en California, hizo mejoras importantes en los tranvías mineros y haciendo puentes de suspensión mediante trenzado de alambres triangulares que se conoció después como Cables California, pero este alambre triangular era costoso y difícil de fabricar y en 1872 utilizó los cables para carros de tranvía en la ciudad. Pero estos cables empezaron a romperse con facilidad, enredándose en el mecanismo del tranvía y en los rieles debajo de él, Seale creó un nuevo cable que se basaba en el reacomodo de tres tamaños de alambre, en un patrón totalmente diferente, de tal forma que todos los alambres de gran tamaño quedaran del lado exterior del filamento incrementando la resistencia a la abrasión sin la pérdida total de flexibilidad. Para esta última se generó, unos años después, un alambre central que va a ser llamado alma o alambre de relleno generando así el cable de 6 por 25, el más usado hoy en día para aplicaciones de uso general. El proceso de extracción del hierro no es muy perjudicial para el medio ambiente ya que el 5% de la superficie terrestre es hierro y no es necesario practicar procesos agresivos como la mega minería para extraerlo. El reciclado de cables de aluminio con un alma de acero se produce mediante cizallas que trituran el material luego lo separan para reutilizar. Se da un proceso similar en los cables de acero
recubiertos por hule, donde mediante fuerzas mecánicas se pican ambos materiales y luego con imanes se los separa para poder reciclarlos.

Definición ciencia

El cable de acero es un conjunto de alambres de acero (con un previo trabajo mecánico de trefilado) trenzados en torrones y vueltos a trenzar sobre el eje central del cable llamado alma, dicha alma puede ser otro torron o puede ser de un material textil. A estos alambres se los ha galvanizado previamente, generándoles mayor resistencia a la oxidación.

Procesamiento

El hierro, principal materia prima para el desarrollo del acero, se extrae de minas en forma de rocas llamadas ematitas, mescladas con otros minerales, que son trituradas y se les agrega agua para volverlas una masa en estado líquido y extraer el hierro con separadores magnéticos para llegar así a los altos hornos que van a fundirlo. El arrabio es el primer proceso que se realiza para obtener Acero, los materiales básicos empleados son Mineral de Hierro, Coque y Caliza. El coque se quema
como combustible para calentar el horno, y al arder libera monóxido de carbono, que se combina con los óxidos de hierro del mineral y los reduce a hierro metálico. El arrabio se refinaba después para fabricar acero mediante chorros de aire que reducen el nivel de carbono homogeneizando la mezcla y dándole el acabado al acero, luego se le agregan aditivos para que sea de la consistencia correcta, se le da forma de lingotes de cierto tamaño que se van moldeando en tubos que llegan a la máquina de trefilado. Dicha maquina comprímelos tubos hasta transformarlos en alambre que luego será llevado a la máquina de trenzado para conformar los cables que vemos en los comercios.

Propiedades

Normas

NormaTítulo
IRAM-547Cables de acero para usos generales
IRAM-599Cables de acero. Método de ensayo para determinar carga de rotura
ISO 2804:2017Steel wire ropes – Requirements
ISO17746:2016Steel wire rope net panels and rolls – Definitions and specifications
IRAM-IAS U 500 114Alambres, barras y cordones de acero para estructuras de hormigón pretensado, Método de ensayo de relajación isotérmica.
IRAM-IAS U 500 117Alambres, barras, cordones y cable de acero para estructuras de hormigón pretensado. Método de ensayo de fatiga
IRAM-IAS U 500 160Alambres de acero para caños de hormigón pretensado.
IRAM-IAS U 500 161-1Productos de acero. Método de ensayo de tracción a temperatura elevada. Condiciones generales.

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
SODIMAC
www.sodimac.com.ar
0810-666-7634
-6 (torrones) x 7 (alambres)
x 3mm (espesor)
Cable acero galvanizado
6 x 7 x 3 por
metro
ChinaSilver Shadow
Resorplast S.A. Resorplast S. A.
www.resorplast.com.ar
4769-3448
-6 (torrones) x 7 (alambres) x 3, 4, 5 y 6 mm (espesor)Cables de acero usos generalesArgentinaResorplast
Resfilex
www.resfilex.com.ar
4301-1210
-6 (torrones) x 7 (alambres)
x 2, 2.5, 3, 4, 5 y 6,3 mm
(espesor)
Cable-
construcción
6×7
ArgentinaResiflex
IPH SAICF
Es.iphglobal.com
4469-8100
6 (torrones) x 7 (alambres)
x 1.5, 1.6, 2, 2.2, 3, 4, y 5
mm (espesor)
Cable 6
cordones-
Uso General
Alma de
Acero
ArgentinaIPH

Bibliografía

https://es.scribd.com/doc/29394783/Cables-de-Acero-Insp-cables-acero
https://www.eldan-recycling.com/es/reciclaje-de-cable
http://t21.com.mx/automotriz/2013/10/30/continental-desarrolla-proceso-reciclaje-cable-acero-recubierto-hule
https://www.youtube.com/watch?v=YREEGd0p0l8
http://www.infoacero.cl/acero/historia.htm
https://www.youtube.com/watch?v=1WyiIh6z–Y
https://www.youtube.com/watch?v=nMZPPoI-Dgg
http://www.iram.org.ar/index.php
http://api.iphglobal.com/uploads/296763001513024041.pdf
http://www.imti.gob.ar/congreso_transportexcable/pdf/dia1/11_Rol_de_INTI_en_control_de_fabricaccion_cables_acero.pdf
Método de Ensayo segun Norma ASTM E 10-78.
Masa Aproximada según norma ISO 2408

Contenedor marítimo

Síntesis

Los contenedores son fabricados principalmente de acero corten, pero también los hay de aluminio y algunos otros de madera contrachapada reforzados con fibra de vidrio. En la mayor parte de los casos, el suelo es de madera, aunque ya hay algunos de bambú.
Cada contenedor se fabrica a partir de un rollo de acero, de él se van desenrollando y cortando las láminas que lo componen. Se les realiza un lavado y una imprimación. Las láminas se sueldan entre sí para formar las paredes y techo del contenedor. Las aristas de este cajón están formadas por perfiles, y a ellos se le sueldan planchas de acero. Las puertas Se fabrican con láminas que se ondulan y luego se sueldan a los marcos. Es un forjado hecho con viguetas metálicas. A todo el conjunto se le aplica una capa de imprimación antes de pasarlo por el túnel de pintura.
En nuestro país solamente dos tipos de contenedores fueron construidos. Los primeros fueron los denominados FACUS, cuya producción se realizó en forma especial para los vagones de carga seca y su característica principal fue que las puertas del contenedor eran laterales. Los otros fueron contenedores Insulados fabricados para la Marina Mercante.

Contexto histórico, social y económico

Malcom Purcell McLean (14 de noviembre de 1913 – 25 de mayo de 2001) fue un empresario estadounidense que desarrolló el moderno contenedor de transporte intermodal, revolucionando el transporte y comercio internacional en la segunda mitad del siglo XX. La subsiguiente contenerización supuso una reducción significativa en el coste del transporte de mercancías al eliminar la gestión de piezas individuales, mejorar la fiabilidad, dificultar los robos y reducir los tiempos de transporte.

El transporte de contenedores fue creado en 1956, es casi tan antiguo como el del transporte. Cuenta la historia que un día Malcom Mclean, esperaba en la zona portuaria de Carolina del Norte el momento para entregar la carga de su vehículo, observaba cómo con muchísimo esfuerzo y trabajo, los estibadores traspasaban fardos de algodón de los camiones al buque, para posteriormente ubicar, con el ritmo que un humano puede hacerlo, la pesada carga en la bodega. Entonces, el joven pensó, “Es una verdadera pérdida de tiempo y dinero. ¿Y si mi camión pudiera subirse con todo su volumen a bordo del buque de una sola vez?”. Con esta “pequeña, gran idea”, pasó de ser un simple inventor a un emprendedor, para finalmente con el tiempo, convertirse en el “Gran empresario del Transporte”, logrando subir la primera carga completa a un buque mediante un contenedor. Un negocio que crece año tras año y cuyo tráfico internacional sigue, mostrando casos positivos.
El costo de un contenedor varía y depende del tamaño, así como de las condiciones en las que se encuentre. También depende del diseño y confort que desees. Esto se puede usar como transporte de mercadería hasta como vivienda hoy en día.

La evolución del transporte marítimo acelera demasiado en los últimos años, eso ha tenido persecución en el mundo actual. Esto quiere decir que su intercambio de mercancías entre un país y otro, incrementando las actividades portuarias y a su vez el impacto ambiental que esta ocasiona en los océanos, lo que puede provocar grandes problemáticas en la vida no solo de los seres que habitan en ella, sino de los que habitan en la tierra. El deterioro del ecosistema es notable. Las actividades propias al transporte marítimo han provocado una serie de problemas ambientales que han deteriorado de forma eminente el medio ambiente como, por ejemplo: La dispersión de emisiones de gases; derrames de sustancias como el petróleo, combustibles que se expulsan a los mares ocasionados por el encallado de las embarcaciones o choques entre las mismas; etc.
Con el incremento del uso de los contenedores para el transporte marítimo y terrestre de mercaderías, se da también el fenómeno del descarte de estos contenedores una vez que han cumplido su vida útil (variable entre 7 y 14 años). Es cada vez más frecuente por lo tanto su reutilización como, por ejemplo, para la construcción de edificios para varios usos como puede ser, bodegas, oficinas temporales, para campamentos de obras en construcción en locales de difícil acceso, centros de capacitación, etc.

Definición ciencia

Los contenedores están hechos generalmente de acero, aunque también podemos encontrar contenedores de aluminio y de contrachapado con fibra de vidrio. El suelo suele estar fabricado en madera o bambú. A pesar de que los contenedores llevan incorporado un recubrimiento interior anti-humedad, para trayectos por mar se hace necesaria la utilización de protección especial anticorrosión y anti-humedad, como plástico retráctil, bolsas termo soldables y sales desecantes, ya que, el efecto de los compuestos salinos puede dañar gravemente la mercancía.

Procesamiento

Todo el proceso de fabricación de un contenedor en las fábricas comienza con un rollo de acero. De dicho rollo se obtienen las láminas que conforman las caras de la estructura. Pero antes de utilizar estas láminas es necesario hacerles un lavado con arena y un proceso que se denomina imprimación. Posteriormente se procede a realizar las ondulaciones características que observamos en los contenedores, esto proporciona la resistencia de la estructura sin tener que recurrir a otros métodos que aumentarían el peso del producto final.
Una vez que se tienen todas las caras, se procede a soldarlas para obtener el contenedor sin puertas. Las aristas que se forman al unir las diferentes caras se apoyan con perfiles tubulares, con el fin de aportar un cierre de mayor resistencia. Con las puertas se procede de manera similar, solamente que las ondulaciones son un poco más suaves.
Por otra parte, el suelo, que es la cara de mayor resistencia del contenedor, está reforzado con viguetas metálicas. Una vez que ya se tiene el contenedor, se procede a aplicar una capa de imprimación para que la pintura se adhiera correctamente. Luego es necesario colocar un suelo de madera. Se cortan los diferentes paneles, se crean las estructuras, se barnizan y se le hacen los agujeros para proceder con la fijación.
Justo antes de finalizar todo el proceso, se colocan los sellos de impermeabilización en las puertas. Luego se impermeabiliza también la parte inferior de la estructura. Unos técnicos de calidad chequean que el contenedor cumple con todas las normas y en caso positivo el contenedor pasa a ser rotulado y etiquetado.

Propiedades

Normas

NormaTítulo
ISO 14001:2004Sistemas de gestión ambiental: Requisitos con orientación para su uso
Esta Norma Internacional especifica los requisitos para un sistema de gestión ambiental, destinados a permitir que una organización desarrolle e implemente una política y unos objetivos que tengan en cuenta los requisitos legales y otros requisitos que la organización suscriba, y la información relativa a los aspectos ambientales significativos. Se aplica a aquellos aspectos ambientales que la organización identifica que puede controlar y aquellos sobre los que la organización puede tener influencia. No establece por sí misma criterios de desempeño ambiental específicos
OAA ISOSistema de gestión de calidad: El sistema desarrollado está orientado a satisfacer las necesidades del usuario, no solo del armador que debe certificar sus buques de acuerdo a los requisitos reglamentarios, sino también consideró al tripulante que debe realizar sus tareas a bordo, para lo cual la Prefectura supervisa las condiciones de seguridad a fin de eliminar los riegos ambientales y de esta forma proteger a la sociedad en general que podría verse afectada por posibles acaecimientos causados por buques.
OHSAS 18001-2007La norma OHSAS 18001 de 2007 especifica todos los requisitos para implementar un Sistema de Gestión de Seguridad y Salud Laboral, facilita la formulación de una política y los objetivos específicos teniendo en consideración los requisitos legales e información sobre los riesgos de la actividad.

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
TRAFUL/ Tel.: 0264 4285763 / Cel.: 155663007
ventas@trafulsrl.com.ar/ http://www.trafulsrl.com.ar/contacto.html
Somos una PYME Argentina especializada en:
· El desarrollo, fabricación, venta y/o alquiler de módulos habitacionales transportables, contenedores marítimos y campamentos.
· La prestación de servicios de preparación, aislación y recubrimiento de superficies.
TRAFULGeneral Acha y Ruta Nacional 40.
Rawson. San Juan. Argentina.
TRAFUL
MSC/ MSC Geneva
Call: +41227038888
Email: info@msc.com/ https://www.msc.com/arg/contact-us
MSC Mediterranean Shipping Company es una empresa internacional que trabaja en el sector del transporte marítimo y la logística. Presente en 155 países, MSC facilita el comercio internacional entre las principales economías del mundo y los mercados emergentes de todos los continentes.MSC Mediterranean Shipping Company S.A.CheminRieu 12-14,1208 Geneva SwitzerlandMSC

Bibliografía

https://www.tibagroup.com/mx/mclean-y-la-caja-que-cambio-la-historia-del-comercio
http://bibliotecadigital.usb.edu.co/bitstream/10819/4380/1/Problemas%20ambientales%20transporte_Jessica%20Pinzon%20M_2016.pdf
https://blog.cajaeco.com/contenedores-maritimos-iso/
https://contenedoresmaritimos.eu/2017/12/21/se-fabrican-los-contenedores-maritimos/
https://www.iso.org/obp/ui/es/#iso:std:iso:14001:ed-2:v1:es
https://www.argentina.gob.ar/prefecturanaval/proteccion-ambiental/certificacion-iram-iso-90012008
https://www.nueva-iso-45001.com/2015/10/que-es-ohsas-18001-de-2007/

Fibra de acero en forma de gancho para refuerzo de hormigón

Síntesis

Son fibras metálicas elaboradas a base de alambre con bajo contenido de carbón. Se mezcla de manera homogénea en el hormigón, brindando mayor resistencia mecánico, excede la mayoría de las especificaciones de desempeño, en lo que respecta a resistencia a la flexión, al cortante del hormigón, resistencia a la fatiga, al impacto y aumenta la ductilidad. Es un refuerzo de bajo costo, diseñado para ser mezclado fácilmente, lo que permite una rápida colocación y acabado en el hormigón. Se aplican sobre pisos industriales, comerciales y residenciales, pistas de aeropuerto y prefabricados.

Contexto histórico, social y económico

A partir del año 200 a.c. se empleaba cabello de caballo para el refuerzo de mortero en la cultura Roma y Mesoamericana. Luego en 1874 se registra el primer contacto reforzado con fibra, aunque en épocas anteriores se usaron de origen natural con el mismo fin. En 1940 el uso de fibras rectas de acero se empleaba para repara pistas en aeropuertos durante la 1º guerra mundial, en 1950 surge el concepto de materiales compuestos y el hormigón reforzado con fibras fue uno de los temas de interés. En 1970 Bekaert comienza con Dramix el uso de fibras en forma de gancho para optimizar anclajes dentro del concreto. El uso de la fibra de acero en forma de gancho mejora el comportamiento a la flexoración, incrementa la resistencia a la rotura, reduce la deformación de la deformación bajo caras mantenidas, aumento a la tracción, fuerte incremento a la resistencia a impacto y choque, gran resistencia a fatiga dinámica, fisuración controlada, y aumento de la durabilidad. Originalmente se empleaba en los morteros pero actualmente se utiliza como esfuerzo estructural (túneles, pisos, losas.). Estas fibras de acero comparadas con otros tipos (fibras de vidrio o polipropileno) son más costosas, disminuyen la tabajabilidad del hormigón y pueden dar lugar a la formación de erizos (bolas de fibra sin hormigón en su interior). Su proceso de producción genera un elevado impacto ambiental.

Definición ciencia

Las fibras de acero son elementos de corta longitud y pequeña dimensión que actúa como matriz distribuido a través del concreto en estado fresco. Con su empleo se obtiene un material mas homogéneo, con una alta resistencia a la tracción, retracción más controlada, resistencia al impacto muy alta, la corrosión no genera desprendimiento del hormigón, peo si un cambio de color en la superficie del mismo.

Procesamiento

Las fibras de acero pueden obtenerse por diferentes métodos; el más común consiste en fabricarlas Por corte de alambre trefilado (proceso conformado en frio mediante el cual se consigue reducir el diámetro del alambrón o alambre haciendo pasa el alambre a través de un dado.) , de acero, de Bajo contenido en carbono. El diámetro de los alambres es de 0.75 mm. La longitud de las fibras son de 60 mm.

Propiedades

Normas

NormaTítulo
ASTM A-820Especificación de fibras de acero para concreto reforzado.
ASTM C-1018Métodos de prueba para elementos colados con concreto reforzado con fibras.
ASTM C-1116Estándares y especificación para fibras en concreto reforzado
ASTM C 1550-08Resistencia a la flexión del hormigón reforzado con fibras
ASTM C 1581- 04Fisuración por contracción

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
BEKAERT

proalco.bekaert.com/
Bolsa de 9 kgDramix 3D Malla en bolsaBelgicaBekaert
SIKA ARGENTINA S.A.I.C


Teléfono: 011 4734 3500
info.gral@ar.sika.com
www.sika.com.ar
Saco de 20 kgSika fiberArgentinaSika
POLICEMENTO

Teléfono: 011 4717 6996
www.policemento.com.ar
Ventas


Consultas:policemento@policemento.com.ar
Bolsas de 20 Kg.Fibra de acero para hormigónArgentinaPolicemento

Bibliografía

http://www.especificar.cl/fichas/Fibras-de-Acero
https://www.bekaert.com/es-MX/productos/construccion/refuerzo-de-hormigon/fibras-de-acero-dramix-3d-para-refuerzo-de-hormigon
https://grupoestructurasysismicaumng.files.wordpress.com/2013/03/alambres_fibras_acero_construccic3b3n.pdf
https://www.researchgate.net/publication/210346533_Steel_fibers_and_steel_fiber_reinforced_concrete_in_civil_engineering

Chapa ondulada fibrocemento

Síntesis

El material está constituido por una mezcla de un aglomerante inorgánico hidráulico (cemento) o un aglomerante de silicato de calcio que se forma por la reacción química de un material silíceo y un material calcáreo, reforzado con fibras orgánicas, minerales y/o fibras inorgánicas sintéticas. Respecto a los métodos de fabricación tenemos la materia prima que es llevada a una preparación para así formar una pasta y dirigirse a la laminadora, donde dependiendo el producto se derivará o a un moldeado, pero en este caso será de ondulación que posteriormente irá a una cámara de secado, una vez seco de tendrá que desmoldar manualmente o con una desmoldeadora y como etapa fina irán a un tren de decoloración y estará el producto terminado [5] En cuanto la disponibilidad ya no se comercializa más placas de fibrocemento con amianto, incluso en países europeos está prohibido emplearlos ya que son nocivos para el cuerpo humano. Por lo tanto si se pueden conseguir productos de fibra de vidrio sin amianto. [6] Se puede aplicar en muros interiores y exteriores, pisos, entrepisos, techos, cielos rasos y muebles con una gran resistencia a impactos y a la humedad que otorga una durabilidad prolongada.

Contexto histórico, social y económico

El fibrocemento aparece en el Año 1.900 gracias al ingeniero austriaco Ludwig Hatschek quien le dio origen a este novedoso descubrimiento en el área de la construcción, se utilizó principalmente para fabricar placas o paneles compactos que varían de su forma permitiéndole así utilizarlos sobre techos y revestimiento de edificaciones. A este invento lo llamo Eternit (eterno), aludiendo a su durabilidad, [1] Este material fue muy novedoso ya que cuenta con propiedades importantes como el de ser resistente a cambios bruscos de temperatura y a agentes químicos, impermeable, aislante acústico, e incombustible. [2] Actualmente se aplica en planchas onduladas para cubiertas, paneles para naves ganaderas, paneles para fachadas ventiladas, revestimientos, tubos para agua a presión (para riego o para abastecimiento de agua potable), tubos de alcantarillado por gravedad, depósitos de almacenamiento de agua, chimeneas de ventilación. En el año1907 El ingeniero de origen italiano Adolfo Maza, crea la primera máquina de producción de placas de fibrocemento a nivel industrial. En primer lugar podemos señalar que el fibrocemento presenta un coste más económico en comparación con la madera o el aluminio, por ello este material es cada vez más normal encontrarlo en naves ganaderas e industrial. [4] Hay que tener en cuenta que el fibrocemento se compone de un material que se conoce como amianto, el cual, es un material muy peligroso y altamente contaminante, y que debe ser tratado con mucho cuidado. Por ello, Una vez que el material no se encuentre en condiciones adecuadas este se tiene que retirar del todo y solo pueden realizarlos aquellos profesionales acreditados por el Registro de Empresas con Riesgo de Amianto (RERA). Se procederá a llevarse a cabo la retirada del fibrocemento, siempre realizada por profesionales cualificados y acreditados para este trabajo, garantizando de esta forma evitar no solo daños personales, sino también, daños al medio ambiente debido a la capacidad de contaminación del amianto. Desmontaje: Consiste en la retirada de los paneles de fibrocemento. Este trabajo se puede llevar a cabo de manera manual o con maquinarias especiales. A veces se da el caso en el que el trabajo se realiza de forma mixta, en la que intervienen tanto la persona como la maquinaria. Transporte: El transporte de los restos del desmontaje del fibrocemento se realiza también por profesionales y camiones diseñados de manera especial para esta labor. Destrucción: Los camiones se encargan de transportar los residuos de amianto hacia unas naves especiales, en las cuales se procederá a la destrucción del mismo, sin que el medio ambiente sufra daño alguno.[7] Se lo asocia a una contaminación muy elevada ya que Al tratarse de un producto cancerígeno, no existe concentración segura para la exposición, es decir, la única exposición segura es la exposición cero. El tiempo transcurrido entre la exposición y la aparición de los primeros síntomas de enfermedad puede llegar a ser de hasta treinta años. Ahora están apareciendo los efectos de la exposición en el pasado. Por ejemplo:- Unas 3.000 personas mueren al año en Gran Bretaña debido a enfermedades causadas por la exposición al amianto en el pasado[8]

Definición ciencia

Procesamiento

Se puede considerar que la etapa fundamental del proceso es el sector de Preparado donde en este lugar se aplica la materia prima como cemento, agua, celulosa, crisotilo, etc.que compondrá la pasta para la producción, luego pasa a la laminadora en este sector se encarga de convertir la pasta en lámina donde es vital importancia conservar constante los espesores, después de esto la maquina Hatschek esta cuenta con cinco divisiones llamadas cubas esta maquina es el medio por convertir la pasta en lamina. Al concluir con esto continua llend hacia el rodillo frmador de pasta o “RODO” donde en este sector se harán las marcas, o las ondulciones, Las ondulaciónes la Línea principal cuenta con dos pórticos que permiten fabricar la placa ondulda o plana. El “Portico” se le llama a la estructura metálica que cuenta con tres o dos ventosas, capaces de crear vacio gracias a ventiladores que están colocados en la arte superior de cada una. Cada pórtico cuenta con un sistema de translado de mesas para las pasta co moldes o solo para los moldes esto deenderade que pórtico se refier. La placa se desplazará luego sobre tres bandas de PVC donde luego llebaran las laminas al rodo grabadorque es un cilindor mettalico que en su cara exterior tiene formas en alto relieve permitiéndole asi grabar formas sobre la placa frezca, dándole así texturas en una de sus cara. Cada pórtico cuenta con sus cuchillas longitudinales y también transversalmenteestas tomaran la fución de realizar los cortes de la placa [9]

Propiedades

Normas

NORMATÍTULO
NMX-C-433-ONNCCE-2014INDUSTRIA DE LA CONSTRUCCIÓN FIBROCEMENTO-LÁMINAS ACANALADAS DE FIBROCEMENTO NT- ESPECIFICACIONES Y MÉTODOS DE ENSAYO (CANCELA A LA NMX-C-433- ONNCCE-2004)
UNE-EN 494:2005Especificaciones de producto y métodos de ensayo. Sistema de evaluación de la conformidad: 3 /4.
UNE 88001Placas onduladas y nervadas de fibrocemento. Criterios para su utilización en cubiertas
ISO 390Productos de fabricación. Muestreo e inspección
UNE-EN 494/A1:2000Placas onduladas o nervadas de fibrocemento y sus piezas complementarias para cubiertas. Especificaciones de producto y métodos de ensayo.

Puesta en obra

Proveedores

DistribuidorFormato Nombre Origen Marca
Argentina

Bibliografía

1
2
3
4
5
6
7
8
9
10
11

Omega fire®

Síntesis

OMEGA FIRE® es un recubrimiento compuesto, que tiene una mezcla de ocho diferentes cerámicos combinados en una fórmula a base de agua para crear una barrera contra la incidencia de la llama extrema y la migración de calor. Los compuestos de su composición sirven para absorber el calor de la llama, cuando estas entran en contacto con la cara del revestimiento comienza a producirse el proceso de cristalización, es decir se comienza a endurecer la superficie. De esta manera los poros se sellan negando el paso del calor.

Contexto histórico, social y económico

OMEGA FIRE® fue creado por una empresa de recubrimientos en Estados Unidos, la idea era obtener un material que no solo sea fuerte para poder contener las llamas, el calor y el humo en caso de incendios. Sino también que no se vuelva frágil después de expandirse contra las llamas. En 1980 Superior Products Internacional, una empresa de recubrimientos innovadores de Estados Unidos, comenzó a investigar y a recolectar compuestos cerámicos de diferentes partes del mundo para realizar pruebas. Durante el estudio llegaron a la conclusión de que no se había realizado ninguna investigación profunda en lo que tiene que ver con el campo de los compuestos cerámicos para detener el calor. Con el Marshall Space Center Laboratories comenzaron a localizar todos los tipos posibles de compuestos cerámicos, naturales o sintéticos, que había en el mercado para someterlos a diferentes pruebas. Se diseñó un sistema para llevar a cada compuesto a pruebas de conducción de calor para encontrar la capacidad de cada material para detener la propagación de temperatura. Se analizaron cientos de materiales, y se identificaron ocho como los que tenían la capacidad de frenar el color de una manera similar a la reflexión. También se eligieron para trabajar en combinación entre sí para capturar el calor de la superficie endureciéndose, y detener la conducción de calor, la penetración de llamas, y de humo o gases. Es un material que tiene una larga vida útil. Fue creado para ámbito de la construcción y se puede aplicar en máquinas, estructuras, transportes de hidrocarburos, en calderas, y en estructuras de gran altura para controlar los incendios y evitar derrumbes. Una de las innovaciones del material como recubrimiento es que es un material altamente flexible, se puede expandir y contraer sin agrietarse, y provee de protección por más de dos horas. La materia prima del OMEGA FIRE® son los materiales cerámicos, estos se encuentran de manera abundante en la tierra. Pero debido a la explotación del material se produce erosión en los suelos, porque para su extracción se recurre a procesos, que realizados de manera prolongada, producen daños en la estructura y la composición de los suelos. No es un material toxico, no contiene plomo ni cromo, por lo tanto cuando se quema no libera gases tóxicos. Es un producto ecológico y no representa una amenaza para el aire, las resinas que contiene son biodegradables se disuelven en contacto con el agua

Definición ciencia

El material es un recubrimiento formado por ochos cerámicos. Su composición química texanol entre el 0,5 1,5% , minerales 3% , polímeros acrílicos 5%, zinc 11%, xileno 2% .Su material de unión es una mezcla de caucho sintético y otros polímeros. (1) Sus componentes principales son el estireno (20%), latex acrílico (80%) (1)

Procesamiento

Los materiales cerámicos son elementos minerales de origen natural, que se encuentran en la tierra. A partir de procesos tecnológicos, crean microesferas huecas con alta presión de gas y fundida a altas temperaturas (1500 C°). Una vez enfriadas dejan un vacío en su interior. Estas microesferas cerámicas se mezclan finalmente con el material aglutinante que está formada a base de agua de acrílico y silicona. Luego se mezcla con otros aditivos ambientales (biocidas, materiales anti incrustantes y anti fúngicos) hacen que el producto final sea duradero y a prueba de moho. (2)

Propiedades

Normas

NORMATÍTULO
ASTM E- 119-20Prueba estándar para pruebas de fuego de construcción de edificios y materiales (3 ) (3 A)
ANSI/UL 1709Prueba de fuego de subida rápida de materiales de protección para acero estructural (3)(3B)
ASTM E- 84-20Prueba estándar para las características de combustión superficial de los materiales de construcción (3)
ASTM C 177 -19Prueba estándar para mediciones de flujo de calor en estado estacionario y propiedades de transmisión térmica por medio del aparato de placa calienteprotegida (3) (3C)

Puesta en obra

Proveedores

DistribuidorFormato Nombre Origen Marca
http://www.laiken.com.ar/
ctrl/lineasespeciales/index.php#servicios Tel.: (+5411) 3986 8804
A pedidoOmega FireArgentinaLaiken
https://www.specoating.com/product/omega-fire/
info@specoating.com

A pedido
Omega FireBelgicaSuperior
http://csamexspi.com/productos/omegafire.htmlA pedidoOmega FireMexicoCS&A
http://nanorevestimientos.cl/?p=2821
Teléfono: +56 9 540 11 606
ventas@gruposibi.cl
A pedidoOmega FireChileNanorevestimientos

Bibliografía

1(1) https://reader.elsevier.com/reader/sd/pii/S1877705815031604?token=9B4BA144E14BB4CB2468394FC6FFAC69B473CCFA3A6D39B47EAE292323F05A2C8F3A00C8D7D4FC3169824C7AF3993ED0
2(2) Normas http://nanorevestimientos.cl/?p=2821
3( 3A) Norma ASTM E 119 https://www.astm.org/Standards/E119 http://eaglecoatings.com/wp-content/uploads/Omega-Fire-7hr-Test.pdf
4(3B) Norma UL – 1709 https://standardscatalog.ul.com/standards/en/standard_1709_5
5(3C) Norma ASTM C 177 https://www.astm.org/Standards/C177
6Prueba Omega Fire
http://eaglecoatings.com/wp-content/uploads/Omega-Fire-7hr-Test.pdf
7(4) Pruebas de laboratorio con recubrimiento de aislamiento térmico nano cerámico líquido.
https://www.sciencedirect.com/science/article/pii/S1877705815031604
8(5) https://www.spimil.com/omega-fire.html https://www.astm.org/
9(6) http://t2960.com.sg/coating/insulation-fire-control/
10http://csamexspi.com/productos/omegafire.html
11https://superiorcoatingsolutions.com/omega-fire/

Megacold®

Síntesis

MEGACOLD® es un panel compuesto, constituido en ambas caras por una lámina metálica, acero galvanizado pre-pintado, y entre ellas una capa de aislante de poliuretano de 40 kg/m3 de densidad promedio. Es de industria nacional, se consigue en medidas estándar, en ancho modular de 1150 mm., y el largo en función de las exigencias específicas del proyecto. El proceso de fabricación es mediante un sistema de producción continuo-automático, que consiste en disponer de la bobinas de acero galvanizado en la prensa y los componentes del poliuretano (isociato y poliol) en la maquina mezcladora, y empieza así el sistema de producción automatizado. El proceso tarda unos 6 minutos máximos en producir cada panel, y esto permite su amplia disponibilidad en el mercado.
Este material es aislante, resistente, ligero y se instala sobre cualquier tipo de estructura portante. Se recomienda su utilización en fachadas, muros interiores y en cielorrasos.

Contexto histórico, social y económico

Surgió a partir del descubrimiento del poliuretano en el año 1937 por el alemán Otto Bayer, por falta de maquinas capaces de procesarlo. Recién en 1959 DuPont desarrollaría un tejido muy elástico, empleando fibras de poliuretano que comercializó bajo el nombre de “lycra”, evidenciando de esta manera una de las tantas propiedades del poliuretano que se fue desarrollando, en este caso la propiedad de resistencia y flexibilidad. No fue hasta 1960 que se desarrollo su propiedad térmica, en Europa, en la post segunda guerra mundial, que se comenzó a implementar en forma de paneles para aislamiento térmico. En la actualidad, se ha podido desarrollar al máximo las propiedades del poliuretano, creando una gama muy amplia de aplicaciones que forma parte de nuestra vida, como en colchones, automóviles, suela de calzado y en edificación, como aislamiento térmico, acústico e impermeabilizante.


Los paneles para aislamientos denominados comúnmente “paneles sándwich de poliuretano”, se empezaron a implementar en Europa, a finales de la segunda guerra mundial para satisfacer las necesidades de cámaras frigoríficas. Con el tiempo y en virtud de las exigencias de sustentabilidad en la construcción (principalmente la de solucionar el derroche de energía que produce climatizar los ambientes de los edificios industriales o residenciales), se empezó a utilizar los paneles sándwich no solamente en refrigeradoras, sino también se implementó en distintos tipos de edificaciones, como una solución efectiva para el aislamiento térmico.


El panel Megacold® surgió en la Argentina a raíz del aumento en la demanda de materiales para la aislación acústica-térmica en la construcción, lo que llevo a la empresa FRIOBER a expandirse, cuya actividad inicial fue la fabricación de paneles para cámara frigoríficas. Pronto esta empresa paso a formar parte del Grupo LTN, que en el año 2012 fundó la empresa llamada Acerolatina S.A., que se enfocaría exclusivamente en la fabricación y distribución de panales, con una clara proyección: la de cubrir los requerimientos arquitectónicas cada vez más exigentes en cuanto a diseño y sustentabilidad. No se tardo mucho en lanzar al mercado el panel Megacold®, con un performance utilitaria muy amplia y versátil, que se puede aplicar fácilmente en cualquier tipo de proyecto, y esto se debe a su composición material, que aporta una elevada capacidad aislante debido a la baja conductividad térmica que posee el gas espumante con sus células cerradas, que garantiza un excelente ahorro energético.


La baja densidad y proporción que ofrece, a diferencia de otros materiales aislantes (ej.: el ladrillo), permite un mayor distanciamiento entre pilares, evitando las estructuras más grandes y de esa forma se disminuye los costos de aplicación mediante la posibilidad de montar en obra rápidamente, con un acabado estético. Se recomienda para fachadas, muros interiores y como cielorrasos, y se puede instalar sobre cualquier tipo de estructura portante.


El panel Megacold® está compuesto de poliuretano y laminas de acero galvanizado. Dicho acero -como el zinc que se usa para galvanizarlo, se extrae de la corteza terrestre, provocando un gran impacto ambiental, y además en su proceso de elaboración y transporte se utiliza una gran carga energética. Por otro lado el poliuretano es un material sintético que se obtiene de la mezcla de dos componentes a base del petróleo y el azúcar (isociato y poliol). En el caso del petróleo, también es un recurso natural en extinción y su proceso de elaboración también tiene mucha carga energética. Tanto el acero como el poliuretano que se usan para la fabricación del panel Megacold®, permite que sea parcialmente reciclable. Ya que el acero se puede reciclar y el poliuretano puede ser triturado, y una vez que éste último se convierte en polvo puede reutilizarse en la producción de nuevas espumas. Pero, y más en el caso del poliuretano no se logra reciclar ni una cuarta parte de su producción en el mundo y terminan en el vertedero, y al ser un plástico, es sabido que no se degradan y por lo general terminan en los océanos contaminando nuestro planeta.

Definición ciencia

Megacold® es un panel acústico, compuesto, constituido en ambas caras por una lamina metálica de acero galvanizada; esta lamina resulta del acero al carbón (Fe+C) que es sometido al proceso de galvanización para aumentar su vida útil (aleación entre aluminio(55%), zinc(42%) y silicio(1.6%) 2, unidas mediante una capa de aislante de poliuretano; un polímero que resulta de la composición química (-CO-NH-R-NH-CO-O-R-O)n, cuya materia prima principal es el isociato y el poliol.3

Procesamiento

El proceso de fabricación es mediante un sistema de producción continuo-automático que consiste primeramente en perfilar y troquelar las bobinas de acero galvanizado, después se transporta a la prensa, donde se somete una temperatura de 40 grados para que el poliuretano se adhiera mejor. Por otro lado, una maquina de espumado de alta presión mezcla los componentes del poliuretano (el isociato y el poliol), con la dosificación adecuada se forma una espuma liquida y pegajoso que se inyecta en el interior de la doble placa de acero galvanizado, esta espuma reacciona químicamente elevándose de una manera brusca y esto permite, mediante el desarrollo de calor y presión que ejerce la prensa sobre el metal, adherirse correctamente a las dos capas de cobertura metálica, inferior y superior. Desde que se mezclan los componentes hasta que la espuma se endurece transcurren entre 3 y 6 minutos pero como la reacción de la espuma es exotérmica, por lo que generalmente supera los 150°C., y por esto, es necesario almacenar los paneles durante al menos 24 horas para que se enfríen y pueda trasladarse correctamente.4

Propiedades

Normas

NormaTítulo
IRAM 11630Aislamiento térmico de edificios – Verificación de condiciones higrotérmicas – Verificación de riesgo de condensación de vapor de agua superficial e intersticial en puntos singulares de muros exteriores, pisos y techos de edificios en general5
IRAM 11625Aislamiento térmico de edificios – Verificación de condiciones higrotérmicas – Verificación de riesgo de condensación de vapor de agua superficial e intersticial en los paños centrales de muros exteriores, pisos y techos de edificios en general.5
UNE-EN 1602Productos aislantes térmicos para aplicaciones en la edificación : determinación de la densidad aparente6
UNE- EN 1607Productos aislantes térmicos para aplicaciones en la edificación. Determinación de la resistencia a tracción perpendicular a las caras.6
UNE- EN 826Productos aislantes térmicos para aplicaciones en la edificación. Determinación del comportamiento a compresión.6
UNE-EN 13501-1Clasificación en función del comportamiento frente al fuego de los productos de construcción y elementos para la edificación. Parte 1: Clasificación a partir de datos obtenidos en ensayos de reacción al fuego.6

Puesta en obra

Proveedores

Distribuidor Formato Nombre Origen Marca 
Info@GRUPOLTN.COM
https://grupoltn.com/acerolatina/
Diseño con ancho útil 1,15
Largos Máximo hasta 14 m, otros largos  metros.  Espesores nominales 40, 50, 60, 80,100, 120, 150 y 180 mm.
Panel para  aislación de poliuretanoArgentinaMegacold
info@mundopanel.com.ar
o +54 911 3767 0303
 
https://mundopanel.com.ar/
Diseño con ancho útil 1,15
Largos Máximo hasta 14 m, otros largos  metros. Espesores nominales 40, 50, 60, 80,100, 120, 150 y 180 mm.
Panel para aislación de poliuretanoArgentinaMegacold
http://panelargentina.com/
+54 9 261 626-7873 – Luis Molina
Diseño con ancho útil 1,15
Largos Máximo hasta 14 m, otros largos  metros. Espesores nominales 40, 50, 60, 80,100, 120, 150 y 180 mm.
Panel para aislación de poliuretanoArgentinaMegacold

Bibliografía

1https://masterpanel.es/pdf/masterpanel-completo-OK.pdf
2https://blog.laminasyaceros.com/blog/el-acero-galvanizado
3http://www.ub.edu/cmematerials/es/content/poliuretano
4https://www.panelsandwich.com/informacion-tecnica/materias-primas/
5https://m2db.files.wordpress.com/2015/07/normas-iram-2015.pdf
6https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0052039

Super Therm®

Síntesis

Super Therm® es un reflectante térmico multicerámico a base de agua. Está diseñado para reflejar el calor del sol,  bloquear la humedad y la infiltración de aire en diversos tipos de superficies. Es una combinación de uretanos  alifáticos, acrílicos elastoméricos y aditivos de resina de alto rendimiento que producen esta capa de recubrimiento. Este material es un derivado de desarrollos científicos aplicados a transbordadores de la NASA. Ha  sido probado exhaustivamente por diferentes organismos normativos y es utilizado hoy día por muchas empresas  alrededor del mundo, desde su introducción al mercado en el año 1993.  Sus principales aplicaciones son: como aislante para bloquear la migración y ganancia de calor solar (techos y  paredes laterales) y como sistema aislante para aplicaciones en interior y vehículos de transporte (contenedores,  camiones, vagones). Es resistente al fuego y a agentes químicos; también provee protección anticorrosiva. Según  sus fabricantes, tiene una durabilidad de aproximadamente 15 años, lo que reduce los costos energéticos y de  mantenimiento. La aplicación de Super Therm puede ser rociándolo, con brocha o rodillo. Una vez aplicado,  refleja las ondas de calor que inciden sobre una superficie evitando que la misma aumente su temperatura.

Contexto histórico, social y económico

Super Therm® es un producto perteneciente a la empresa Superior Products International, fundada por el investigador norteamericano Joseph Pritchett en la década del 90. Según afirma la página web de esta empresa,  Pritchett trabajó un breve tiempo en una división de la NASA, dedicándose a la investigación de aislantes para  transbordadores espaciales. Este lugar es el Centro de vuelos espaciales Marshall, ubicado en la base militar Red  Stone, en el estado de Alabama (EEUU). [1] [2] Luego de esta experiencia laboral, adquiriendo conocimientos de vanguardia, Pritchett comenzó a indagar sobre un  nuevo aislante cerámico hecho a partir de distintos compuestos. En un principio, el concepto de revestimiento  reflectante solía ser muy primitivo; se pensaba que usar un solo componente cerámico para reflejar de la superficie  la radiación solar era la mejor manera de resolver el problema.

En una investigación que duró aproximadamente  cuatro años, Pritchett llego a la conclusión de que existen otras variantes. Investigó qué compuestos específicos  realmente funcionan en entornos específicos. También investigó que compuestos -mezclados con otros- mejorarían  el rendimiento; tanto para bloquear la radiación solar, la corrosión y controlar los incendios. Al final de esta  investigación, Pritchett terminó concibiendo lo que hoy se conoce como Super Therm; una pintura reflectante  compuesta de diversos tipos de cerámicos y polímeros. Este nuevo producto, brevemente después de haber sido concebido, fue facilitado a los laboratorios de Bombardier  Ingeniería, una empresa canadiense que trabaja en el sector ferroviario, automotriz y aeronáutico. Esta empresa decidió someter Super Therm® a una serie de testeos normativos, entre ellos el que concierne la normativa ASTM C 236, (método de prueba estándar para el rendimiento térmico en estado estacionario de ensamblajes de edificios  mediante una caja caliente protegida) que fue llevada a cabo por los laboratorios VTEC en Nueva York e  International Labs, en Pensilvania. Este método de prueba, conocido como método de caja caliente protegida, mide las propiedades de transferencia  térmica en estado estacionario de paneles o paredes. Proporciona una evaluación del rendimiento térmico de  conjuntos materiales de construcción. Es adecuado para ensamblajes de construcción de edificios, paneles de  construcción y otras aplicaciones de muestras no homogéneas a rangos de temperatura similares. Este método de  prueba se puede aplicar a cualquier construcción de edificios para la cual sea posible construir una muestra  razonablemente representativa del tamaño apropiado para el aparato de prueba. 

Se hizo una comparación entre Super Therm® y aislante de fibra de vidrio de 76,2 mm. La prueba arrojó los siguientes  resultados: Super Therm® produjo un valor K de 0,31 a 0,254 milímetros. Luego, cuando el revestimiento se aplicó a  ambos lados de la pared, el valor K fue de 0,21. Por otro lado, el valor K de la fibra de vidrio fue de 0,52. Por  supuesto, cuanto menor sea el valor K, mejor será el aislamiento térmico. [1] Sin embargo, y a partir de estos resultados, surge la siguiente interrogante: ¿qué sentido tiene comparar un aislante  térmico de casi 8 centímetros de espesor, contra una pintura reflectante con un espesor promedio de 0,3mm. Se trata de dos materiales que cumplen funciones similares, pero operan de una manera distinta. Super Therm®  cumple con la funciona de aislante reflejando el calor del calor, no absorbiéndolo. Es usado mayormente en el rubro  industrial, para recubrir contenedores de gran tamaño -más que nada metálicos expuestos constantemente al sol evitando así el calentamiento excesivo de estas superficies y sus interiores. A gran escala, el uso a largo plazo de este producto puede significar ahorros en materia de energía y logística, debido  a su extensa vida útil. De hecho, la EPA (Environmental Protection Agency – EEUU) ha reconocido los beneficios  ambientales de Super Therm® para reducir el consumo de energía y la contaminación resultante de este consumo.

Definición ciencia

Super Therm® está compuesto por cuatro diferentes tipos de cerámicos, cado una con una función definida. Un tipo  de cerámico es el encargado de la aislación por conducción y los otros tres restantes son los encargados de bloquear  la radiación solar: un cerámico para la radiación UV, otro para la luz visible y el restante para la radiación infrarroja. Además de estos cerámicos, este material también está conformado por uretanos alifáticos, acrílicos elastómericos y  aditivos de resina de alto rendimiento que le brindan dureza y elasticidad, con lo que su duración es bastante  elevada respecto a otras pinturas. Super Therm® puede ser aplicado sobre metales, también sobre hormigón y  madera. La aplicación se puede desarrollar con brocha o rodillo. [3]

Procesamiento

El proceso de fabricación comienza con la molienda y la mezcla de la materia prima que compone el material (arcilla). La mayoría de estos componentes vienen prefabricados por industrias auxiliares. La elaboración de este tipo  de materiales cerámicos refractarios de base acuosa se inicia con la adición de agua, aminas y agentes dispersantes a  un estanque de premezcla. Posteriormente, se adicionan los pigmentos y agentes extensores. Una vez realizada la  premezcla, y dependiendo del tipo de pigmento, el material pasa a través de un equipo especial de molienda,  aunque normalmente sólo los esmaltes a base de agua pasan por estos equipos de molienda; los látex y pastas se  dispersan y terminan en tanques de mezcla donde se produce la dispersión. Luego se transfiere a un tanque de  mezclado donde mediante agitación, se incorporan las resinas y los plastificantes, seguidos de preservantes,  antiespumantes y finalmente la emulsión de resina. Por último, se agrega el agua necesaria para lograr la  consistencia deseada. Luego de mezclar todos los ingredientes, el producto obtenido es filtrado para remover  pigmentos no dispersos. A continuación, se procede al envasado del mismo, en recipientes de distinta volumetría,  procediendo a su almacenaje y comercializándose por unidad de peso o volumen.[4]

Propiedades

Normas

NormaTítulo
ASTM C236Standard test method for steady-state thermal performance of building assemblies by means of a guarded hot box
ASTM E84Standard test method for surface burning characteristics of building materials
ASTM D4541Standard test method for pull-off strength of coatings using portable adhesion testers
ASTM E514Standard test method for water penetration and leakage through masonry
ASTM D4060Standard test method for abrasion resistance of organic coatings by the taber abraser
ASTM E96Standard test methods for water vapor transmission of materials

Puesta en obra

Proveedores

Distribuidor Formato Nombre Origen Marca 
Laiken S.A.
+541143040111
+541143056785
http://www.laiken.com.ar/
Baldes de 18 LSuper ThermArgentinaSPI Coatings Inc
Beta Paint
+56222463834
contacto@betapaint.cl
https://www.betapaint.cl/
Baldes de 18 LSuper ThermChileSPI Coatings Inc
Aldan LTDA
+5511966287070
luizsergio@aldantecnologia.com.br http://aldantecnologia.com.br/
Baldes de 18 LSuper ThermBrasilSPI Coatings Inc
Consulting Solutions & Associates +5219381048974
sgamez@csamexspi.com
http://www.csamexspi.com/
Baldes de 18 LSuper ThermMéxicoSPI Coatings Inc
SPI Coatings Inc
(España)
+34619620045
jcmarques@nanocapa.com
Baldes de 18 LSuper ThermEspañaSPI Coatings Inc
SPI Coatings Inc (Alemania)
+4982529154649
supertherm@t-online.de
http://www.supertherm.de/
Baldes de 18 LSuper ThermAlemaniaSPI Coatings Inc
SPI Coatings Inc
+19136692550
sales@spicoatings.com
https://spicoatings.com/
Baldes de 18 LSuper ThermEstados
Unidos
SPI Coatings Inc

Bibliografía

1Resumen escrito por el inventor de Super Therm: Joseph Pritchett – Obtenido el 9 de abril https://insulationcoatings.com.au/history-of-superior-products-international-ii-and-super-therm/
2Carta redactada por el Centro de vuelos espaciales Marshall (NASA) a Joseph Pritchett – Obtenido el 9 de abril http://www.eaglecoatings.com/certifications/supertherm/nasa.html
3Ensayo escrito por Sebastián García Huidobro: ingeniero de la Facultad de ciencias físicas y matemáticas de la Universidad de Chile – Obtenido el 10 de junio  http://repositorio.uchile.cl/bitstream/handle/2250/144482/Estudio-de-pinturas-aislantes-t%C3%A9rmicas-y-su posible-aplicaci%C3%B3n-para-el-ahorro-energ%C3%A9tico-en-un-tipo-de.pdf
4Patente de producto de proceso fabril similar, escrita por Tobías González Romero – Obtenido el 2 de junio https://patents.google.com/patent/ES2428794A1/es
5Lista completa de normas y ensayos a los que fue sometido el material – Obtenido el 5 de abril https://www.betapaint.cl/images/icons/Super%20Therm%20-%20Certificaciones.pdf
6Página oficial de la ASTM – Obtenido el 5 de abril  https://www.astm.org/
7Comparativa gráfica de diferencia térmica entre una parte de una cubierta con Super Therm y otra sin – Obtenido el 2 de junio  https://www.americantemperaturecontrol.com/Ceramic-Insulations.html
8Ficha técnica completa provista por el fabricante – Obtenido el 9 de abril  http://spicoatings.com/wp-content/uploads/2019/10/Super-Therm-Product-Documents-10-02-19.pdf Versión traducida al español provista por Consulting Solutions & Associates – Obtenido el 9 de abril http://www.csamexspi.com/ft/spi/SUPERTHERM%20esp.pdf

Ignicold®

Síntesis

Ignicold es un panel de aislación compuesto por un núcleo de lana de roca mineral, recubierto en ambas caras con chapas de acero galvanizado o prepintadas. Se obtiene mediante un sistema de producción continuo, en el cual se calientan las placas previamente perfiladas de chapa, a una temperatura de 40 ºC, para mejorar la adhesión de la espuma que se coloca en una segunda instancia. Es un producto apto para fachadas y divisiones interiores, recomendado para edificaciones industriales, comerciales, entre otras; en especial si requieren elevadas prestaciones de resistencia al fuego. Los espesores comerciales oscilan entre los 30 y 200 mm.

Contexto histórico, social y económico

La lana de roca, perteneciente a la familia de lanas minerales, es un material a base de roca volcánica. Fue descubierto por primera vez en Hawái a principios del siglo XX, fruto de la acción natural de los volcanes. Hacia el año 1937, en aras de darle una aplicación a este material, la empresa Rockwool comienza su producción en Hedehusene, Dinamarca.En un primer momento, el proceso de producción estaba basado en fibras sopladas en vapor, a partir de las cuales generaban productos de lana granulada y de manta cosida. En 1948, Rockwool adquiere la licencia requerida para adicionar aglomerante a la lana de roca, lo que le otorgó a los productos una gran estabilidad dimensional. Recién en 1952 pudo introducirse el proceso de producción de lana hilada, más eficiente y versátil, con la cual se fabricaban, por ejemplo, mantas para el aislamiento de tuberías. Aprovechando esta propiedad del material, Rockwool crea Rockfon, marca que comercializaría productos de aislamiento acústico. En paralelo, se creó Grodan, que desarrollaba lana de roca como medio de cultivo para el desarrollo de cultivos de precisión. No obstante, con los avances en la técnica de producción, hacia 1980 lograron fibras con una mayor estabilidad térmica, basada en la fibra Spinrock que habían consolidado en la década del setenta. Si bien producían aislamientos para el ruido de las aspiradoras, para objetos de altas temperaturas en hornos de gas natural, entre otros; hacia mediados de la década de los ochenta comienzan a innovarse. Introducen nuevos productos con fines más allá del aislamiento térmico, como la línea de paneles Conlit, que se utiliza para la protección de edificios. Esta consta de un núcleo de lana de roca, revestido con aluminio reforzado. 

La línea Conlit tiene propiedades similares a los paneles Ignicold, marca registrada por Acerolatina, una empresa argentina dedicada a la fabricación y comercialización de paneles aislantes térmicos y acústicos, que es parte del Grupo LTN. Esta comienza a distribuir los paneles Ignicold en el año 2012, junto con otros productos para fachadas y muros, cubiertas y pisos. Como afirman desde Rockwool, la roca es uno de los recursos naturales más abundantes del mundo. El núcleo de lana de roca puede ser reciclado, mediante su trituración y mezcla en briquetas. Empero, su extracción implica un impacto ambiental y paisajístico importante, debido a que estas rocas que se posicionan en la superficie tienen funciones como controlar la dirección de los vientos. Asimismo, la extracción de la misma mediante excavaciones afecta a la flora y la fauna de las zonas aledañas. Es la etapa de producción de lana de roca es la que presenta un mayor impacto (considerando como unidad de referencia 1 m2). Esto se debe a que representa más del 90% del impacto del producto a lo largo de su ciclo de vida para los siguientes indicadores de impacto: Calentamiento global (4,55 kg CO2), Consumo de recursos no renovables (72,70 MJ/FU), consumo de energía (73,65 MJ/FU) y agua (0,02 m3). (6) En cuanto al impacto ambiental de la producción de acero galvanizado, se trata de aplicar políticas más sustentables en las extracciones de las materias primas y potenciar el reciclado del mismo, renovando la capa del galvanizado. (7) Tomando en consideración la resina aglutinante, el hecho de derivarse de la industria petroquímica invita a un replanteo en términos de nuevas alternativas más sustentables. (9) Cuando la lana alcanza los 200ºC por primera vez, este aglutinante se descompone, liberando un fuerte olor, resultado de la pirólisis o combustión de la resina, por lo que se recomienda ventilación para este proceso. (3D)

Definición ciencia

 Los paneles Ignicold se componen por un núcleo de lana de roca, de espesores que varían entre los 50 y 100 mm. La lana de roca es un material a base de roca volcánica, siendo uno de sus elementos principales el basalto, compuesto por un 45 a 52% de sílice, y rico en hierro y magnesio. Esta pertenece a las lanas HT, con un alto contenido de aluminio y un bajo porcentaje de sílice.  Mientras que entre un 95 y 100% es lana de roca, un 5% de su volumen es ocupado por el aglutinante y ciertos aceites naturales. (3D).  Estos aglutinantes son a base de resina de fenol-formaldehido inofensiva modificada con glucosa. (8) El acero galvanizado o prepintado es un acero estructural denominado S 280 GD (EN 10326).(16A)

Procesamiento

La roca volcánica se obtiene mediante la recolección de la misma que se deposita en las zonas cercanas a los volcanes, o mediante su extracción a través de excavaciones. Estas rocas son transportadas hasta centros fabriles, en donde son mezcladas con coque –compuesto de carbono-, para formar un relleno que se coloca en una cúpula. Esta cúpula se calienta a una temperatura mayor a 1500 º C, en la cual la mezcla se fusiona por la combustión del coque. Luego, ese líquido, al pasar por rotores que giran a alta velocidad, conforma unas fibras. Estas se atomizan con la colocación de un aglutinante. Luego de ser colocadas en una cámara bajo presión y conformar una lámina, atraviesan un proceso de bateo que las dispone de manera zigzagueante. Impregnados con aglutinante, se transportan a un horno a más de 200ºC en donde la resina se polimeriza. Por otra parte, las hojas de acero pasan por rodillos moldeados que perfilan sus bordes, y luego son calentadas a 40ºC aproximadamente, para poder adherir la lana de roca en las mismas.

Propiedades

Normas

NormaTítulo
IRAM 1864Materiales aislantes térmicos. Ensayo de corte, y de determinación del coeficiente de fluencia, para el material del núcleo (espuma rígida de poliuretano, espuma rígida de poliestireno expandido, y lana mineral de roca o de vidrio) de paneles aislantes t
IRAM 1740Materiales aislantes térmicos. Lana mineral (de vidrio, roca o escoria). Requisitos
IRAM 1742Materiales aislantes térmicos. Lana mineral (de roca o de vidrio). Determinación de la densidad.
UNE 92180:2017Características mínimas recomendables para distintas aplicaciones. Productos aislantes térmicos para aplicaciones en la edificación. Productos manufacturados de lana mineral.
UNE-EN13501-1:2007+A1:2010Clasificación en función del comportamiento frente al fuego de los productos de construcción y elementos para la edificación.

Puesta en obra

Proveedores

Distribuidor Formato Nombre Origen Marca 
Acerolatina SA (Grupo LTN)

MENDOZA
T. (+54) 261 4978088
BUENOS AIRES
T. (+54) 0237 4904086 / 0237 4904087
info@grupoltn.com

https://grupoltn.com/acerolatina/
La longitud mínima es de 2.40 m, mientras que la longitud máxima es 8.00 m. Los espesores de lana de roca oscilan entre los 50, 80 y 100mm. El acero galvanizado puede tener un espesor de 0,5 mm en la cara interior y hasta 0,7mm en la exterior.IgnicoldArgentinaAcerolatina
Mundo Panel

+54 911 3767 0303

info@mundopanel.com.ar

https://mundopanel.com.ar/#productos
La longitud mínima es de 2.40 m, mientras que la longitud máxima es 8.00 m. Los espesores de lana de roca oscilan entre los 50, 80 y 100mm. El acero galvanizado puede tener un espesor de 0,5 mm en la cara interior y hasta 0,7mm en la exterior.IgnicoldArgentinaAcerolatina
ACH

+34 949 20 98 68
+34 949 20 98 99

info@panelesach.com

https://www.panelesach.com/
Espesores de 30 a 200mm. La longitud máxima recomendada es de 12 metros, mientras que el ancho de 1,150 metros.Panel sándwich de lana de roca ACH.EspañaACH
Rockwool

T (+34) 948 730 700
T (+34) 902 430 430
(Sede Navarra, España.)

https://www.rockwool.es/
Los espesores varían de 20 a 100 mm. El ancho del panel es de 1200mm y su largo de 1800mm.Conlit 150 AFDinamarcaRockwool

Bibliografía

1Acerolatina-Grupo LTN: https://grupoltn.com/tme/
2aMundo Panel. Descripción en la página web https://mundopanel.com.ar/product/paneles-de-lana-de-roca-ignicold/.
2bFicha técnica https://mundopanel.com.ar/wp-content/uploads/2018/08/IgnicoldLTN-FINAL.pdf
3aA – Características del material. https://www.rockwool.es/productos-y-soluciones/fuego/conlit-150-af/?selectedCat=fichas%20t%C3%A9cnicas#Descripci%C3%B3n .
3bB- Contexto histórico y surgimiento del material. https://www.rockwool.es/quienes-somos/historia/.
3cC- Ficha técnica https://cdn01.rockwool.es/siteassets/rw-es/herramientas/fichas-tecnicas/fuego/ft_conlit-150-af_es.pdf?f=20181120030819
3dD- Ficha de seguridad http://download.rockwool.es/media/135702/ficha%20de%20seguridad%2001-2013.pdf
4Nota periodística escrita por Javier Cruz Aguirre. Un «crimen» ambiental y paisajístico, la extracción de roca de volcán en SQ. Publicada en 4 vientos-Periodismo en red. 27/06/2015. http://www.4vientos.net/2015/06/27/un-crimen-ambiental-y-paisajistico-la-extraccion-de-roca-de-volcan-en-sq/
5Nota periodística escrita por Jorge Perzabal. Paran extracción de roca volcánica. Publicada en El Vigia. 08/03/2018. https://www.elvigia.net/el-valle/2018/3/8/paran-extraccin-roca-volcnica-297914.html
6Eco Platform EPD. Declaración Ambiental del Producto. Isover Saint Gobain. Lana mineral. https://gryphon4.environdec.com/system/data/files/6/11565/S-P-00757%20EPD%20ISOFEX%20(Spanish%20version).pdf
7Wooley, T. La galvanización y la construcción sostenible. Asociación Técnica Española de Galvanización. http://tingalfa.com.ar/wp-content/uploads/2016/09/la-galvanizacion-y-la-construccion-sostenible.pdf
8Eco Platform EPD. Declaración ambiental del producto. Rockwool. file:///C:/Users/EQUIPO/Downloads/ROCKWOOL%20Steinwolle-Daemmstoff%20im%20niedrigen%20Rohdichtebereich.pdf
9Héctor E. Covarrubias Velázquez, Aidé Sáenz Galindo, Adali O. Castañeda Facio. Resinas termoestables de fenol–formaldehído. En: Revista Iberoamericana de Polímeros. Volumen 17(6), Noviembre de 2016. http://www.ehu.eus/reviberpol/pdf/NOV16/covarrubias.pdf
10ISOVER Saint Gobain. https://www.isover-aislamiento-tecnico.es/sobre-nosotros/nuestros-materiales/lana-de-roca
11Grupo Panel Sandwich. https://www.panelsandwich.com/informacion-tecnica/procesos-de-produccion/
12IRAM www.iram.org.ar
13Buscador de Normas UNE- AENOR www.aenor.com
14TECHNONICOL Tn Iberia. Catálogo de Productos. https://www.tniberia.com/wp-content/uploads/2019/03/Catalogo-Lana-Roca.pdf
15Paneles ACH. Ficha técnica. https://www.panelesach.com/assets/documentacion/fichas-tecnicas/P5G_30M_V3.pdf
16aA- https://www.panelsandwich.com/informacion-tecnica/materias-primas/
16bB-https://www.panelsandwich.com/wp-content/uploads/2018/06/panel-lana-de-roca-fachada-ignifuga.pdf
17aGrupo Panel Sandwich. https://www.panelsandwich.com/producto/panel-fachada-ignifuga/
17bhttps://www.panelsandwich.com/wp-content/uploads/2018/11/guia-operaciones-con-panel-sandwich.pdf