Archivos de la categoría Envolvente

Vidrio texturizado

Síntesis

El vidrio texturizado es un tipo de material cerámico amorfo. Se obtiene a unos 1500°C a partir de arena de sílice (SiO2), óxido de sodio (Na2O) y óxido de calcio (CaO). Es producido de manera similar a las placas prensadas de vidrio, excepto que la placa se coloca entre dos rodillos, uno de los cuales lleva el diseño. El estampado es impreso sobre la lámina por un rodillo de impresión, el cual es prensado al vidrio mientras éste está aún suave. El vidrio muestra un diseño en relieve y, para terminar, el vidrio es enfriado o endurecido en un lehr (horno largo con un gradiente de temperatura de extremo a extremo, utilizado para recocer objetos de vidrio). Comúnmente, el vidrio utilizado para este propósito es más blanco que los vidrios claros usados para otras aplicaciones y puede ser laminado o templado dependiendo de la profundidad del diseño para producir un vidrio de seguridad. Al poseer en una o ambas caras un dibujo o textura decorativa que impide la visión clara y transmite la luz en forma difusa, brinda, según el diseño, diferentes grados de translucidez e intimidad. En arquitectura y decoración de interiores, se utilizan con nuevos criterios de diseño en una amplia gama de aplicaciones que, entre otros, incluyen el equipamiento de interiores, la arquitectura comercial y la decoración en general.

Contexto histórico, social y económico

El vidrio se descubrió en Siria por los mercaderes de natrón (material de sosa). En la ruta que realizaban hacia Egipto, quisieron preparar la comida y, como necesitaban rocas donde apoyar sus ollas, decidieron utilizar el natrón que transportaban. Al día siguiente, comprobaron que el natrón se había fundido, y al contacto con la arena del suelo, se había convertido en un material brillante, parecido a una piedra.
 
En la Edad Antigua, los egipcios y los fenicios fueron los principales fabricantes y proveedores de vidrio. Después, cuando Roma conquistó Egipto, muchos vidrieros emigraron a Roma, donde su arte fue apreciado por los patricios. Aquí, en el imperio Romano es donde por primera vez se empieza a utilizar el vidrio texturizado en los famosos vitrales, principalmente para decorar objetos. En la Edad Media, los vitrales empiezan a utilizarse en ventanas para las iglesias católicas por toda Europa. Hasta el siglo XII estas ventanas eran relativamente simples, pequeñas, y solían estar rodeadas por marcos gruesos de hierro debido a que la arquitectura románica (caracterizada por muros gruesos y formas redondas) predominaba en ese entonces. Posteriormente al siglo XII, el estilo románico se reemplaza con la arquitectura gótica y aquí se mejoró la técnica de los vitrales texturados gracias a la tracería que lograba increíbles detalles.
 
En el siglo XIX, con la revolución industrial, se crearon procesos industrializados para la fabricación del vidrio plano que influyeron en gran manera en el vidrio texturizado. Ya no se necesitaba de técnicas manuales para darle textura al vidrio. Con el proceso de flotado se puede cargar una matriz con el diseño de la textura que queremos imprimir y por medio de unos rodillos, al salir del baño de estaño, se graba el dibujo en el vidrio. Este gran avance permitió crear una gran variedad de diseños y también poder utilizar el vidrio texturizado en aplicaciones como divisor de espacios, tabiques, puertas, techos, entre otros. El avance tecnológico permitió también la creación del vidrio templado y laminado, los cuales tienen procesos para generar mayor resistencia, y con esto se puede utilizar el vidrio texturizado también como vidrio de seguridad si se lo requiere.
 
El vidrio texturizado se aplica principalmente en espacios interiores, y la principal característica es que permite dividir los espacios brindando privacidad y por su textura difumina el paso de la luz. Se aplica en la arquitectura y el diseño de interiores. Si se requiere un vidrio plano común el costo es moderado, pero si se requiere un vidrio de seguridad (templado o laminado) el costo es elevado.
 
En cuanto al impacto ambiental, el vidrio texturizado está conformado principalmente por sílice, que es una de las materias primas más abundantes del planeta. Pero lo más importante es que se puede reciclar y de esta forma se reduce el gasto de energía y las emisiones de CO2. Teniendo en cuenta que para su fabricación se debe calentar a una temperatura elevada, allí se genera un impacto ambiental bastante grande por el gasto de energía, pero se compensa al no ser perjudicial para el ambiente en su uso y sobre todo por su reciclabilidad.

Definición ciencia

Es un material inorgánico fundido, el cual se enfría hasta llegar a un estado rígido sin experimentar cristalización. Puede definirse como un producto inorgánico amorfo, constituido principalmente por sílice. Está compuesto de un 68% hasta 74.5% en peso de SiO2, de 10% hasta 16% de Na2O y de 9% hasta 14% de CaO. Es duro, frágil y transparente, de elevada resistencia química y deformable a alta temperatura.  Para el vidrio laminado, se unen varias láminas de vidrio de cualquier grosor, mediante películas intermedias realizadas con materiales plásticos translúcidos. Para el vidrio templado, el vidrio se procesa mediante tratamientos térmicos o químicos para aumentar su resistencia.

Procesamiento

La Sílice, al ser uno de los elementos más abundantes en el planeta, se obtiene directamente de las canteras, el Óxido de Sodio se produce por la reacción del sodio con el hidróxido de sodio y el Óxido de Calcio se obtiene por la calcinación de la caliza, con un gran contenido de carbonato de calcio, a una temperatura de unos 900°C en hornos. Una vez obtenidas las materias primas se preparan las mezclas y pasan por un proceso de almacenamiento, pesaje y mezclado hasta que son transportadas y colocadas en silos junto a otros elementos en menor escala como por ejemplo vidrio reciclado. Posteriormente, se vierten en un horno de fusión, construido de cerámicos refractarios, a una temperatura de entre 1500°C y 2000°C hasta que se funden y se vuelven una masa transparente. Cuando la masa de líquido fundido llega a la temperatura correspondiente, pasa a circular por una cámara donde se produce un baño de estaño liquido; este es el proceso de flotado y el más importante de todo el sistema. Aquí es donde el vidrio comienza a enfriarse lentamente, se ajustan las características superficiales como el espesor y se obtiene una lámina de vidrio pulida por ambas caras. La flotación se produce debido a que el estaño tiene una mayor densidad y una menor temperatura de fusión que la del vidrio. Al salir de la cámara de estaño a una temperatura de aproximadamente 1000°C, el vidrio pasa por unos rodillos donde se le imprime el dibujo para su textura y entra en el proceso de recocido, donde circula por medio de unos rodillos para terminar de enfriarse lentamente. Una vez que está por debajo de los 200°C se procede a cortarlo y se almacenan verticalmente hasta su posterior embalaje.

Propiedades

Normas

NormaTítulo
ASTM E 2190Especificación estándar para el rendimiento y evaluación de unidades de vidrio aislante. (10) (12)
CPSC16CFR-1201Estándar de seguridad para materiales de acristalamiento arquitectónico. (11)
ASTM C 1172Especificación estándar para vidrio plano arquitectónico laminado. (12)
IRAM 12595Vidrio plano de seguridad para la construcción. Práctica recomendada de seguridad para áreas vidriadas susceptibles de impacto humano. (7)(8)
IRAM 12.565Vidrios planos para la construcción para uso en posición vertical. Cálculo del espesor conveniente de vidrios verticales sustentados en sus cuatro bordes. (7)(8)
IRAM 12572Vidrios de seguridad planos, templados, para la construcción. (7)(8)

Puesta en obra

Proveedores

Distribuidor Formato Nombre Origen Marca 
Saint-Globain Glass.
 
 33 1 47 62 30 00
 
 https://www.saint-gobain.com/en
Montado en doble acristalamiento. Puede ser templado, laminado o curvado.
 Medidas estándar: 3.21m x 2.25m y 3.21m x 2.00m.
 Espesores: 4mm, 6mm y 10mm.
SSG DECORGLASS Y MASTERGLASS.Francia.Saint-Globain (19).
Pilkington United Kingdom Ltd European Technical Centre.
 
 pilkington@respond.uk.com
 
 01744 692000
 
 www.pilkington.co.uk
Hay 21 patrones diferentes de diseño. Vienen endurecidos y laminados para mayor seguridad. Disponible en 4mm. de espesor. Para efecto horizontal, la altura máxima es de 1320 mm. Si es vertical, a 2140 mm.Pilkington Texture Glass.
 
 Pilkington Oriel Collection.
Reino Unido.Pilkington (20).
VASA Vidriería Argentina SA.
 
 54 11 4239-5000
 
 vasamloc@vasa.com.ar
 
 https://www.vasa.com.ar/
Medidas
 · 120X180 m.
 · 160×250 m.
 · 160×300 m.
 
 Espesor
 · 2.1 mm.
 · 4 mm.
 · 6 mm.
 · 8 mm.
 · 10 mm.
Vidrios texturados.Argentina.ViiO (2).
GLASSIC
 
 0800-777-0836
 +54 (011) 4723-1010
 
 info@e-glassic.com
 
 https://www.e-glassic.com/
Disponible en 4, 5, 6, 8 y 10 mm de espesor según dibujo.Catedral incoloro.Argentina.Glassic (4).

Bibliografía

1ECOLOGIA HOY. Vidrio.  https://www.ecologiahoy.com/vidrio
2VIIO VASA Technology. Vidrios texturizados.https://www.viio.com.ar/products/vidrio-texturado/
3VIIO VASA Technology. Vidrios texturados, la trasparencia como recurso de diseño. https://www.viio.com.ar/notes/vidrios-texturados-la-trasparencia-como-recurso-de-diseno/
4GLASSIC. Vidrios decorativos.  https://www.e-glassic.com/vidrios-decorativos/
5Prezi (Daniella Lazo Echaiz). Vidrios texturados y
pavonados. https://prezi.com/gar7igookf9e/vidrios-texturados-y-pavonados/
6CurioSfera. Historia del vidrio o cristal. https://curiosfera-historia.com/historia-del-vidrio-inventor-origen/
7Ing. Carlos Pearson. Manual del Vidrio Plano. Cuarta ed.,
CAVIPLAN, Argentina, 2013
8Municipalidad de Rosario. Sección 3.12. Utilización del
vidrio en la construcción. https://www.rosario.gob.ar/mr/normativa/reglamento-de-edificacion/seccion-3/seccion-3.12.-utilizacion-  del-vidrio-en-la-construccion
9Guardian Glass. Certificaciones y Estándares. https://www.guardianglass.com/la/es/tools-and-resources/recursos/glosario-de-vidrio/certificaciones-y-
estandares
10Intertek. ASTM E2190: rendimiento y evaluación de la unidad
de vidrio aislante.                                              https://www.intertek.com/building/standards/astm-e2190/   
11Engineering 360. CPSC – 16 CFR PART 1201 SAFETY STANDARD FOR
ARCHITECTURAL GLAZING MATERIALS. https://standards.globalspec.com/std/9997771/16-cfr-part-1201
12AAMA. Normas y pautas de vidrio.https://aamanet.org/pages/glass-standards-and-guidelines
13Vidriería Española. Propiedades generales del vidrio. http://www.vidrieriaespanola.com.ar/arq/Propiedades-generales-del-vidrio.php
14Wikipedia. Vidrio https://es.wikipedia.org/wiki/Vidrio#Propiedades_del_vidrio
15Vivir sin plástico. ¿plástico o vidrio? https://vivirsinplastico.com/plastico-o-vidrio/
16Saint Gobain. Propiedades del vidrio https://www.saint-gobain-sekurit.com/es/glosario/propiedades-del-vidrio
17Wikipedia. Coeficiente de dilatación. https://es.wikipedia.org/wiki/Coeficiente_de_dilataci%C3%B3n
18EkoGlass. Aislacion acústica. https://www.ekoglass.com.ar/product/ekoglass-akustic/
19Saint-Globain. SGG DECORGLASS Y MASTERGLASS. https://mx.saint-gobain-glass.com/es-MX/sgg-decorglass-masterglass
20Pilkington. Pilkington Texture Glass
https://www.pilkington.com/en-gb/uk/products/product-categories/decoration/pilkington-texture-glass#pilkingtontextureglasswarwick
21Ecovidrio. Hablando en vidrio. https://hablandoenvidrio.com/historia-del-vidrio-i/
22Características. Vidrio https://www.caracteristicas.co/vidrio/
23My modern met. El vitral https://mymodernmet.com/es/historia-vitral/

Madera contrachapada

Síntesis

La madera contrachapada es un conjunto de chapas o láminas finas de madera cruzadas en la dirección de las fibras unidas mediante un adhesivo llamado resina adhesiva fenólica. En general estas fibras se encuentras perpendiculares entre sí. Esto se hace con el fin de distribuir la resistencia longitudinal de la madera y compensar la deformación.
Existen tres tipos básicos de madera contrachapada; de abedul, mixta y conífera. Lo que las caracteriza es la densidad y, por consecuente, el uso al que se la destina. Las dos maderas más comúnmente usadas son el pino y el abedul.
Generalmente su uso varía entre funciones estructurales, amoblamiento, carpinterías no portantes (puertas, divisiones), revestimientos tanto de techos, como muros interiores y exterior, recubrimiento en interiores de casas y en interiores de edificios residenciales, públicos y de oficinas, etc.
Se comercializa en tableros y se puede conseguir en aserraderos, supermercados destinados a la construcción, o en carpinterías si se requiere en menores cantidades.

Contexto histórico, social y económico

En primer lugar, se dice que los primeros en trabajar esta manera la madera fueron los egipcios. No en las mismas dimensiones ni aplicaciones, sino más bien para la aplicación en muebles y sandalias. Más adelante, ya en el siglo XVII el uso del contrachapado fue destinado a la construcción principalmente en usos de carpintería. Ya hacia el siglo XIX se investigó más a fondo al material así poder utilizarlo en el ámbito constructivo como suelos o cubiertas. A principios del siglo XX ya se instalan las primeras fábricas y se le acuña el termino plywood. En ese momento la industria del contrachapado estaba principalmente destinado a la industria aeronáutica, de carrocerías y de muebles. Unos años después se empleó en la construcción de viviendas, específicamente en Estados Unidos para los veteranos de la II Guerra Mundial. En la actualidad su aplicación no estructural se basa en muebles, carpinterías (puertas, divisiones), revestimientos de techos, paredes, fachadas, etc.
Los principales países productores de contrachapado mundialmente son España, Finlandia y Estados Unidos. La localización puede ser un factor importante al momento de elegir un tablero ya que sus propiedades y usos pueden variar rotundamente. Las medidas de los tableros variaran según el lugar de procedencia. En Argentina su tamaño comercial es de 1,22m x 2,44m con espesores entre 6 y 18mm.
También podemos clasificarlo según composición de las capas: Puede ser contrachapado fino (Puede hallarse gran variedad en calidades, precios y tipos de madera; desde pino hasta maderas preciosas como el roble. Son maleables, resistentes, flexibles y sus aplicaciones son en mobiliario, cocinas, paredes, etc.), contrachapado con tres capas (Tiene las caras conexas a una sola lámina central. Los grosores pueden ser idénticos, o el del núcleo puede ser más grueso para mejorar el equilibrio del panel. Normalmente se usa para aplicaciones como fondos de cajones y parte posterior de armarios.) y contrachapado multicapa (tiene el núcleo compuesto por un número impar de hojas. El grosor de cada hoja puede ser idéntico al de las otras, o las que tienen las fibras orientadas en la dirección del ancho pueden ser más gruesas. Esto sirve para dar al panel la misma rigidez tanto en longitud como en anchura. Debido a su estabilidad y ligereza, este tipo de contrachapado es un material excelente para hacer muebles.)
Una de las ventajas de la madera contrachapada es que puede ser reutilizada. Si las tablas están intactas y el pegamento de las juntas no se ha separado, las tablas pueden usarse otra vez dependiendo el uso. Además, este tipo de madera puede ser utilizado como abono orgánico. Incluso si se mezclan con virutas de madera es más fácil el proceso de compostaje. Este es un punto importante a destacar ya que reduce su impacto ambiental que básicamente se basa en la deforestación de grandes bosques y la utilización de energía ya que el material debe ser procesado y transportado. De todas maneras, al poder ser producido con distintos tipos de árboles puede haber algunos casos en que sean de regeneración más veloz que en otros. Lo ideal sería una tala controlada y plantación para no explotar la materia prima.

Definición ciencia

La materia prima del contrachapado, es decir la madera, se compone por tres materiales principales:
La celulosa, es un polímero formado por glucosa. Estas moléculas se unen y forman microfibrillas.
La hemicelulosa, es un polímero que regula la humedad, da flexibilidad a la fibra y las une.
La lignina, es un polímero que da dureza y protección.
Al primer material nombrado se lo llama matriz y a los otros dos refuerzo. Este último funciona como “pegamento” y mantiene las propiedades mecánicas.

Procesamiento

La construcción de la madera contrachapada se divide en cuatro etapas principales:
A- Preparación de los troncos: Consiste en el corte y la cocción de los troncos. Esto último se hace para ablandar la madera y que se haga próximamente un corte fresco.
B- Manufactura de chapas: Comienza con el corte de láminas, secado (muy importante para garantizar una buena unión entre laminas), y preparación de las chapas. Aquí se unen mediante una maquina donde las chapas se encolan en las direccionen perpendiculares entre lamina y lamina, cortando de las dimensiones deseadas. El encolado puede hacerse mediante un pegamento termo-estable o termo-plástico.
C- Manufactura del contrachapado: Se esparce el pegamento uniformemente por las láminas y se le hace un pre-prensado en frio (para prevenir complicaciones que pueden darse en el transporte al prensado caliente) y luego se prensan a una presión de 10-15kg/m2 con una temperatura de 110-120°C.
D- Terminado: Se cortan las tablas en una máquina que corta longitudinal y trasversalmente según la medida establecida. Luego se lijan según el tipo de acabado deseado y finalmente se inspeccionan y clasifican.

Propiedades

Normas

NormaTítulo
UNE-EN 313-1CLASIFICACION Y TERMINOLOGIA
SFS 2290TERMINOLOGIA DEL TABLERO CONTRACHAPADO
SFS 2416ENSAYO DE LAS CARACTERISTICAS DEL TABLERO CONTRACHAPADO DE ABEDUL
SFS 4093DIMENSIONES Y TOLERANCIAS DEL TABLERO CONTRACHAPADO FINLANDES PARA LA CONSTRUCCION
IRAM 9562DETERMINACION DE LA CALIDAD DEL ENCOLADO
IRAM 9740CLASIFICACION  DE LOS COMPENSADOS DE MADERA PARA USO INTERIOR SEGÚN ASPECTO DE LAS CAPAS.

Puesta en obra

Proveedores

Distribuidor Formato Nombre Origen Marca
MADERSAMA S.A.
Camarones 3952, C1407FMN CABA
011-4566-1235
Dimensiones: 2440 x 1220 mm
Espesores: 6, 9, 12, 15 y 18 mm
Placa Compensado Fenólico Eucaliptus/pinoBrasilMarply.
MADERSAMA S.A.
Camarones 3952, C1407FMN CABA
011-4566-1235
Dimensiones: 2440 x 1220 mm
Espesores: 6, 9, 12, 15 y 18 mm
Placa Compensado Fenólico AbedulRusiaSveza.
ASERRADERO BIEL
 
J. M. Blanes 74, La Boca (1155) ,Ciudad Autónoma de Buenos Aires
Teléfono : 11-4362-8912
Dimensiones: 2440 x 1220 mm
Espesores: 6, 10, 12, 14 y 18  y 24mm
Distintas calidades según normas iram: 5-5 Scrap (de segunda), 4-4 industrial de dos curvas rusticas, 3-4 con nudos masillados y lijados y 3-3 con dos caras con nudos masillados y lijados.
Fenólico Eucaliptus GrandisArgentinaGrupo Tapebicuá.
DAC MADERAS
 
Ruta 8 (Ricardo Balbin) 3338, San Martin. Buenos Aires.
Tel: 11-4738-1100
Dimensiones: 160x220cm
Espesores: 6, 12, 15mm
MULTILAM. UREICO GUATAMBÚ 220X160ParaguayGM MADERAS S.R.L.

Bibliografía

1https://www.klingspor.de/es-ar/nociones-en-abrasivos/madera-contrachapada
2https://www.emedec.com/contrachapado-caracteristicas-aplicaciones/
3http://www.cscae.com/area_tecnica/aitim/actividades/act_paginas/libro/11%20Tableros%20contrachapados.pdf  (pdf sacado de la página del consejo superior de colegio de arquitectos de España).
4*1  Pdf publicado por Alvifusta- almacen de maderas.
https://www.alvifusta.es/documents/10155/113471/ABEDULPLY+Tablero+Contrachapado+Abedul/d0a93339-cbca-49c7-93a2-05ae3d1c8dae?version=1.2

5*2  Pdf publicado por AITIM – Asociación de Investigación Técnica de las Industrias de la madera
https://www.cscae.com/area_tecnica/aitim/enlaces/documentos/Tableros_CONTRACHAPADOS_15.06.2015.pdf

6*3  Pdf publicado por Maderas de Llodio.
http://www.manufacturasmarpe.com/temas/bootstrap/uploads/archivos/ficha-tecnica-tableros-contrachapados-pino-maderas-llodio.pdf

7Pdf publicado por infomadera. (para resistencia ambiental también).
https://infomadera.net/uploads/articulos/archivo_2372_10005.pdf

Estructura laminada de troncos para pared

Síntesis

Construcción de muros estructurales a partir de troncos de madera laminados, encolados y prensados hidráulicamente. Los segmentos prolijamente cortados se colocan de forma invertida para que los aros de la madera logren mayor estabilidad estructural, evitando la torsión una vez instalados.
Mayor disponibilidad en zonas de producción maderera, y aplicados mayormente en zonas frías para aislar el interior de las viviendas de las bajas temperaturas.

Contexto histórico, social y económico

Fue patentada por John K. Mayo en diciembre del año 1865 (3), y a partir de ahí comenzó su producción, llegando a las grandes industrias a principios del siglo XX. Eran producidas más de 400 placas de madera laminada por día.
Es utilizado principalmente en zonas nórdicas, donde el frío es muy intenso, ya que es muy buen aislante térmico.
Si bien son utilizadas maderas blandas y de rápido crecimiento, dichos periodos suelen ser de al menos 15 años. Esta particularidad impacta directamente en el costo del método de construcción, además de ser una técnica que precisa de personal capacitado y maquinaria específica para su colocación, lo cual también eleva su costo. Todo esto conlleva a su baja demanda, es una técnica que casi no se utiliza.

Si su uso es responsable, la producción de este material no deja una huella irreparable en los bosques ya que la madera utilizada es generalmente blanda y de rápido crecimiento, así como el pino, abeto y otras especies típicas de la zona donde se construya. Para unir los listones de madera se utiliza adhesivo poliuretano, el cual tiene la capacidad de unir fuertemente distintos materiales y tiene gran resistencia a los solventes y el agua. Por otro lado, es muy poco resistente a los rayos ultravioleta.
En la parte negativa, es necesaria maquinaria capaz de mover grandes volúmenes.
Un gran beneficio de los productos de madera es que son fácilmente reciclables. Según el tratamiento que haya tenido anteriormente, puede reciclarse y destinarse a: producción de carbón vegetal, viruta para destino ganadero, compost o como cama de animales, o para la fabricación de tableros aglomerados. La madera que no pueda ser reciclada se utiliza para la generación de energía a través de la incineración, pirolisis y gasificación por plasma (4).

Definición ciencia

Los bloques laminados se construyen, casi en su totalidad, de madera, la cual se compone de celulosa, hemicelulosa y lignina. Para unir y fijar las láminas se utiliza adhesivo poliuretano (PUR), un polímero proveniente de la reacción de disocianatos con distintos polioles (5). Es un material de gran resistencia a los agentes ambientales.

Procesamiento

Una vez extraída la madera, se realizan cortes longitudinales, obteniendo listones de un mínimo de 6cm. Se colocan de forma tal que sus fibras estén paralelas, y con los anillos del tronco espejados. De esta manera son encolados con adhesivo poliuretano y prensados hidráulicamente.
Una vez obtenida esta gran viga de madera, se los segmenta en piezas de igual tamaño y se les da la forma que permite el encastre entre sí.
Está compuesto por láminas de madera blanda (por ejemplo, pino, cedro, abeto o alerce) de un espesor mínimo de 6cm. Estos son unidos con adhesivo poliuretano y prensados.

Propiedades

Normas

NORMATÍTULO
IRAM 9660-1Madera laminada encolada estructural – Clases de resistencia y requisitos de fabricación y de control
IRAM 9532Maderas – Método de determinación de la humedad
ISO 9709:2018Structural Timber – Visual strength grading – Basic principles
ISO 12122-1:2014Timber structures – Determination of characteristic values – Part 1: Basic requirements
ASTM D8223-19Standard Practice for Evaluation of Fire-Retardant Treated Laminated Veneer Lumber
ASTM D907-15Standard Terminology of Adhesives

Puesta en obra

Proveedores

Distribuidor Formato Nombre Origen Marca 
Eurohonka Log Houses
eurohonka@eurohonka.fi
https://www.eurohonka.fi/
18,3×8,8cm
18,3×11,3cm
18,3×13,5cm
20,8×16,8cm
20,8×20,2cm
26×23,2cm
26x27cm
Tronco laminado cuadrado (Laminated square logs)Pirkanmaa, FinlandiaEuro Loghouses Oy
U.S. Log & Timber
sales@uslogandtimber.com
https://www.uslogandtimber.com/
12,7×3,5cm (17/16’’x5’’)
13,3×5,5cm (51/4’’x23/16’’)
13,3×7,4cm (51/4’’x27/8’’)
13,3×9,4cm (51/4’’x321/32’’)
Tronco laminado (Laminated log)Texas, Estados UnidosU.S. Log & Timber
Aito
info@aitologhouse.fi
https://www.loghouse.fi/
27x24cm (medida estándar)
 
Posibilidad de hacer medidas a pedido
Tronco laminado cuadrado (Laminated squared log)Rovaniemi, FinlandiaAito
Wood SRL Madera Laminada (Sistema similar en Argentina)
info@woodsrl.com.ar
http://woodsrl.com.ar/
24×0,8m (medidas máx.)
15,2cm (6’’) (ancho máx.)
 
 
10,2×10,2cm (4’’x4’’)
12,7×12,7cm (5’’x5’’)
15,2×15,2cm (6’’x6’’)
20,3×20,3cm (8’’x8’’)
Vigas rectas y curvas
 
 
Columnas laminadas de Eucaliptus Grandis
Santa Fe, ArgentinaWood SRL Madera Laminada

Bibliografía

1– Adhesivos para madera laminada encolada
– Obtenida el 12 de junio de 2020
– https://www.plataformaarquitectura.cl/catalog/cl/products/9580/adhesivos-para-madera-laminada-encolada-jowat
2– Wood SRL Madera Laminada
– Vigas rectas y curvas, Características
– Obtenida el 12 de junio de 2020
– http://woodsrl.com.ar/categoria-producto/vigas-rectas-y-curvas/
3– Reinhart, Kevin Ann
– The History of Wood Lamination
– Obtenida el 20 de abril de 2020
– https://www.ehow.com/about_6733867_history-wood-lamination.html
4– Reciclario
– Madera
– Obtenida el 20 de abril de 2020
– http://reciclario.com.ar/indice/madera/
5– Polyurethanes
– Composición y producción del poliuretano
– Obtenida el 23 de junio de 2020
– http://www.polyurethanes.org/es/que-es/composicion-y-produccion 
6– The Engineering Toolbox
– Density of Various Wood Species
– Obtenida el 20 de abril de 2020
– https://www.engineeringtoolbox.com/wood-density-d_40.html

7– U.S. Log & Timber
– Laminated vs. Log Wall Systems
– Obtenida el 20 de abril de 2020
– https://www.uslogandtimber.com/laminated-logs

8– Wood SRL Madera Laminada
– La madera y su comportamiento frente al fuego
– Obtenida el 23 de junio de 2020
– http://woodsrl.com.ar/la-madera-y-su-comportamiento-frente-al-fuego/
9– Uçar, Günes; Balaban Uçar, Mualla
– The Estimation of Acidic Behavior of Wood by Treatment with Aqueous Na2HPO4 Solution
– Obtenida el 23 de junio de 2020
– https://www.hindawi.com/journals/jamc/2012/496305/
10– S.S. Darwish; N.M.N. El Hadidi
– The Effect of Solvents on the Chemical Composition Of Archaeological Wood
– Obtenida el 23 de junio de 2020
– https://scholar.cu.edu.eg/sites/default/files/nesrin/files/the_effect_of_solvents_on_the_chemical_composition.pdf
11– Fiorentino, Catherine
– The Effects of Water on Different Types of Wood
– Obtenida el 23 de junio de 2020
– https://www.hunker.com/12336790/the-effects-of-water-on-different-types-of-wood

12– Segura, Beatriz
– Usar madera en zonas costeras
– Obtenida el 23 de junio de 2020
– https://www.maderea.es/usar-madera-en-zonas-costeras/

13– Perma-Chink Systems, Inc.
– What is causing wood damage? Coastal living and effects of UV light
– Obtenida el 23 de junio de 2020
– https://www.permachink.com/blog/wood-damage

14– Wood Solutions, design and build
– Environmental Product Declaration for Glued Laminated Timber (Glulam)
– Obtenida el 23 de junio de 2020
– https://neufert-cdn.archdaily.net/uploads/product_file/file/68335/EPD__Environmental_Product_Declaration__For_Glue_Laminated_Timber.pdf

15-17– McKenzie, William M. C., Design of Structural Elements. Segunda ed., Londres, 2013, pág. 531.
18 – Casas de Tronco Laminado
– Calidad de los materiales
– Obtenida el 20 de abril de 2020
– http://www.casasdetroncolaminado.es/servicios.html

19 – Maderea
– ¿Por qué la madera es un buen aislante acústico?
– Obtenida el 23 de junio de 2020
– https://www.maderea.es/por-que-la-madera-es-un-buen-aislante-acustico/

Tablero de madera contrachapada de abedul sin recubrimiento

Síntesis

Se cree que la madera contrachapada se originó de querer aparentar muebles de calidad, consistió en tomar las hojas finas de maderas decorativas y pegar en pedazos gruesos de madera de baja calidad. En su momento, su uso era exclusivamente para la fabricación de mobiliario.En tablero contrachapado se fabrica a partir de grandes chapas de madera. La chapa procede del desenrollo del tronco. Este último, ha sido sometido previamente a una cocción por vapor de agua, para reblandecer la madera y facilitar el proceso. La presentación más común de este material es en tableros 1,22×2,44 metros, en grosores que van de los 3 mm hasta los 36 mm.
El desenrollo se realiza en un torno como un enorme sacapuntas a una velocidad espectacular. A continuación, pasan por un proceso de secado rápido previo al proceso de prensa.
El tablero contrachapado se compacta entonces en estas prensas. Las chapas de madera superpuestas, alternan el sentido de la fibra y son pegadas entre sí con colas normales o fenólicas, siendo el resultado final un panel de gran estabilidad dimensional, excepcional resistencia y reducción de alabeo.

Contexto histórico, social y económico

Según algunos autores, los egipcios habrían sido los inventores del tablero contrachapado. En sentido estricto no es así ya que el contrachapado requiere chapas finas, adhesivos fuertes y presiones importantes, medios que no se encontraban al alcance de esta civilización.          Una de las actividades que más hizo adelantar la aparición del contrachapado fue la construcción de claves y pianos a partir del siglo XVII. Las curvadas cajas de armonía y de resonancia de estos grandes instrumentos se solucionaba mediante laminado al hilo de diferentes capas de chapas.Es cierto que se trabajaba el chapado con gran maestría en mueble y otros objetos (son famosas las sandalias de Tutankamon a base de madera y otros materiales). Pero años más adelante empezaron las estructuras construidas a partir de esta madera, por su gran firmeza y resistencia.Las capas que forman la madera contrachapada se pegan intencionalmente juntas en ángulos rectos alternos. Esto es lo que le da resistencia y durabilidad. Este granulado cruzado también reduce las posibilidades de que la madera se parta al clavar en los bordes, y hace que la madera sea resistente a la deformación, el agrietamiento y la torsión. La forma en que está hecha la madera contrachapada también garantiza una resistencia constante en toda la longitud de la madera.

Definición ciencia

Los materiales que entran en su composición son: chapas o capas de madera abedul, adhesivos y revestimientos. Chapas y capas de madera Las chapas son láminas de madera que no sobrepasan los 10 mm de espesor. Las chapas para tableros se clasifican por la presencia de peculiaridades de la madera (principalmente nudos) en tableros estructurales o bien por su estética y figura en tableros decorativos para cara o contracara.Los adhesivos dependiendo del uso y de las características del tablero se pueden usar adhesivos de urea formol para interiores y de urea formol reforzadas con melamina o fenol formaldehído, para exteriores.

Procesamiento

En tablero contrachapado se fabrica a partir de grandes chapas de madera. La chapa procede del desenrollo del tronco, en vez de unir estrechas hojas de cortes longitudinales. El tronco ha sido sometido previamente a una cocción por vapor de agua, para reblandecer la madera y facilitar el proceso.
El desenrollo se realiza en un torno como un enorme sacapuntas a una velocidad espectacular. A continuación, pasan por un proceso de secado rápido previo al proceso de prensa.
El tablero contrachapado se compacta entonces en estas prensas. Las chapas de madera superpuestas, alternan el sentido de la fibra y son pegadas entre sí con colas normales o fenólicas, siendo el resultado final un panel de gran estabilidad dimensional, excepcional resistencia y reducción de alabeo.

Propiedades

Normas

NORMATÍTULO
D3043-00ASTM. Métodos de ensayo para tableros estructurales en flexión.
ISO-14001UNE-EN. Sistemas de gestión ambiental.
D4442-07ASTM. Métodos de prueba estándar para la medición de contenido de humedad directa.
ISO 9001ISO. Determinación de requisitos para un sistema de gestión de calidad.
PS-09APA. Norma de producto voluntario, madera contrachapada estructural.
UNE-EN 314:2007UNE-EN. Calidad de encolado

Puesta en obra

Proveedores

MARCAORIGENNOMBREFORMATODISTRIBUIDOR LOCAL
KoskisenEspañaCONTRACHAPADO TABLEROS DE CONTRACHAPADO DE ABEDULDimensiones: 2500 x 1250 mm Espesor mm 6,5 Número de chapas 5Maderas Medina     maderasmedina@maderasmedina.com   https://www.maderasmedina.com/index.html
AdaicoEspañaTABLERO DE ABEDUL BIRCH BB/CPDimensiones: 2500 x 1250 mmAdaico   adaico.sas@adaico.com   https://www.adaico.com/es/
TablenovaEspañaTablero Contrachapado de Abedul1250mm x 2500mm   6,5mm a 30mmTablenova     info@tablenova.com     http://www.tablenova.com/

Bibliografía

1https://es.wikipedia.org/wiki/Contrachapado
2https://www.plataformaarquitectura.cl/cl/926463/tableros-de-madera-diferencias-entre-mdf-mdp-contrachapado-y-osb
3https://www.hguillen.com/2014/01/tablero-contrachapado/
4http://www.tablenova.com/productos/tableros/tableros-contrachapado-alistonado/#contrachapado-abedul
5http://www.cadamda.org.ar/portal/index.php?option=com_content&task=view&id=519&Itemid=2
6(6) https://www.maderapedia.com/madera/propiedades_fisicas_de_la_madera.html
7https://www.woodproducts.fi/es/content/propiedades-termicas-de-la-madera
8Wood Engineering Handbook, Second edition; Forest Products Laboratory; Prentice Hall, Englewood Cliffs, NJ (1990).
9https://infomadera.net/uploads/productos/informacion_general_284_Protectores%20Preventivos%20agentes%20xilofagos_28.01.2015.pdf
10https://infomadera.net/uploads/articulos/archivo_3239_11585.pdf
11https://www.plataformaarquitectura.cl/cl/893955/8-materiales-biodegradables-que-la-industria-de-la-construccion-necesita-conocer
12(12) https://www.woodproducts.fi/es/content/madera-contrachapada
13(13) https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-915X2011000300005
14https://www.scielo.br/pdf/cerne/v18n2/a17v18n2.pdf
15http://www.aemcm.net/archivos/normas_calidad.pdf
16https://www.maderasmedina.com/ficha-tecnica/KoskiStandard_es.pdf
17https://infomadera.net/uploads/articulos/archivo_1690_17395.pdf
18(18) http://www.matweb.com/search/datasheet_print.aspx?matguid=bd6620450973496ea2578c283e9fb807
19https://www.maderaschapar.com/wp-content/uploads/2017/08/ficha_maderaschapar_contrachapado_100_abedul.pdf
20https://www.maderasmedina.com/tableros/contrachapado/tableros-contrachapados-de-abedul.html
21http://woodsrl.com.ar/control-de-calidad/
22http://www.aidima.es/index.asp
23https://www.adaico.com/es/1-18050004.html
24http://publiditec.com/blog/tableros-contrachapados-madera-para-la-construccion/
25http://www.cscae.com/area_tecnica/aitim/actividades/act_paginas/libro/11%20Tableros%20contrachapados.pdf
26https://www.tpinspection.com/uploads/file/479/Plywood%20Manufacturing%20Process%20-%20Spanish

Chapa Cincalum acanalada

Síntesis

La chapa de Cincalum Acanalda, está compuesta principalmente por acero. Este acero, se reviste en aluminio y zinc, de esta manera se logra incrementar y mejorar sus propiedades físicas y mecánicas, logrando un material más resistente para el ámbito de la construcción. Esta chapa puede ser utilizada en cerramientos, cubiertas residenciales, comerciales o industriales, tinglados, perfiles, paneles, galpones, lugares donde el ambiente es adverso. Puede conseguirse esta chapa en espesores de C-25 Y C-27 anchos de hasta 1.10 mts. y largos de hasta 13 mts.1
El proceso de fabricación de este material, parte de una chapa de acero, que es sometida a un proceso de inmersión en caliente en una aleación de aluminio (Al 55%) y zinc (Zn al 45%). Luego esta chapa pasa por una maquina formada por una grampa , resortes que la sostienen; eje y tornillo y por ultimo cuenta con una serie de rodillos gracias a los cuales se le otorga la forma de “canaleta”. 

Contexto histórico, social y económico

El zinc es descubierto por Andreas Sigismund Margraff en Alemania. Este material ya era utilizado anteriormente, pero se descubre que gracias a este material, muchos metales pueden ser protegidos de la corrosion.2 y 3 
Por otro lado, el descubrimiento de la chapa se realiza en Norteamérica, Baltimore, por el inventor del “tapon corona” William Painter de origen Irlanndes ,cuya invención surge con el fin de poder cerrar los envases de gaseosa; La chapa surge en el año 1891 y se patenta el invento en el año 1982.4
La problemática que llevo a Painter a inventar el “tapón corona” surge del alto consumo que había en ese momento de gaseosa, ya que no había forma eficaz de poder cerrar el envase sin que se deje escapar el gas de la misma. El diseño original consistía en una forma circular que poseía una pestaña corrugada que era obtenida de plegar la chapa ciñéndola a la botella y que en su interior poseía un revestimiento de corcho y papel que evitaba el contacto de la gaseosa con la chapa.4
Tiempo después, la invención del “tapón corona” genera otra problemática que Painter nuevamente logra resolver con otro invento. El nuevo problema que surgía, era, lograr abrir la gaseosa, sin quebrar el pico de la botella. De este modo Painter creó el “abre botellas”.5
El zinc surge en el año 1746 en Alemania, Por Andreas SigismuundMarggraf. Tiempo antes de que el zinc fuese identificado como metal, era utilizado para formar los latones alrededor de los años 200 y 300 AC.3 y 6
Se pueden conocer varios objetos del latón, provenientes de Babilonia, Y Asiria en el S.III AC, y Palestina en los años 1400 y 1000 AC. 5 La primera mezcla de Zinc da origen en Rodas, en el 500 AC. 
Era considerado un material muy caro, ya que se importaba desde india. Su primera aplicación como componente fue en la fabricación de monedas.
En la fabricación del acero, los procesos que son realizados, generan gases que contienen monóxido de carbono y polvo, los mismos podrían ser reciclados si se logra eliminar el polvo que resulta dañino al aire; también en la fabricación del acero se requieren muchas cantidades de agua, y también genera muchos desechos sólidos, tales como la escoria básica o la escoria de alto horno. 
Mediante la fabricación del zinc se contaminan grandes cantidades de agua, ya que el zinc aumenta la acidez de la misma, también resulta dañino para los suelos, ya que interrumpe de forma negativa La descomposición de la materia orgánica, además de tener un impacto negativo en las plantas ya que sus sistemas no pueden manejar niveles tan altos de Zinc. 9

Definición ciencia

Chapa de Cincalum Acanalada: Lamina de chapa de acero, hierro compuesto de carbono, magnesio, Níquel, azufre, cromo, fosforo, etc 7. La chapa es revestida en una aleación mediante una inmersión en caliente de Zinc (45%) y Aluminio (55%) y de esta manera incrementa, y mejora sus propiedades, como por ejemplo, mejora su resistencia a la corrosión. Es utilizada principalmente en el ámbito la construccion.1

Procesamiento

El aluminio es fabricado mediante la obtención de la bauxita, Australia era el principal productor del mineral. Se lleva a cabo un proceso denominado “Bayer” que es utilizado para separar las impurezas, de allí se produce la alúmina. Para la obtención del aluminio se debe fundir y luego reducir la alúmina por electrolisis logrando separar el aluminio y el oxigeno; La alúmina requiere de un altísimo punto de fusión difícil de alcanzar, lo que resulta en un problema para la fabricación del aluminio.31
Para fabricar la chapa, se extrae la materia prima en un proceso de excavación y extracción del elemento, proceso conocido como “minería”. Luego de obtener el material, es trasladado a un centro de transformación, donde se tritura la roca para de esta manera poder separar los minerales, ya que los minerales metálico se encuentran mezclados con otros materiales; una vez que se obtiene el metal, este se funde en el alto horno, mezclando con otros compuestos, como el hierro, y se fabrican aleaciones; En el alto horno, se extrae el hierro, con todavía bastantes impurezas, y para purificarlo es traslado a acería, donde se le añaden elementos de aleación y asi finalmente se puede obtener la chapa, entre otros materiales.32

Propiedades

Normas

NORMATÍTULO
    IRAM 670Aluminio y sus aleaciones. Chapa perfilada de aleación de aluminio para techos y revestimientos.8
IRAM-IAS U500-513Chapas de acero revestido conformadas, de perfil sinusoidal (acanaladas)9
ASTM A792 / A792M – 03Especificación estándar para chapa de acero, 55% aleación de aluminio y zinc recubierta por el proceso de inmersión en caliente. 10
IRAM-IAS U 500-204.Chapas de acero al carbono y de baja aleación de calidad estructural, recubiertas de una capa de aleación de aluminio-cinc por el proceso continuo de inmersión en caliente.
IRAM-IAS        U500-05Chapas de acero de bajo contenido de carbono laminadas en frio.
IRAM-IAS U500-131Chapas de acero de alta resistencia, laminadas en frio, para uso estructural con características especiales de confortabilidad. 18

Puesta en obra

Proveedores

MARCAORIGENNOMBREFORMATODISTRIBUIDOR LOCAL
HIMANMendoza argentinaCincalum de techos (acanaladas)Espesor 0.50-0.70 Ancho 1.86 mmHIMAN, http://www.himanaceros.com.ar/cincalum-de-techo/ (0261)4317417 , contacto@himan.com.ar 22  
Ternium SiderarArgentinaChapa acanalada o sinusoidalC-25 y C-27    FERROCENTER http://ferrocenter.com.ar   (011)7078-1000 24
Ternium Siderar.Argentina.Chapa acanalada-trapezoidal de acero revestido CINCALUM.Espesores C-25 Y C-27. Largos 13 mts. Anchos 1,10 mts.CURIA, http://www.curia.com.ar/chapasconformadas.htm ventas@curia.com.ar +5411 4228-7200 .21
Ternium SiderarLa Plata ArgentinaChapas acanaladasEspesor 0.40- 0.50 Ancho 1.086 mmGiliberto Hnos. http://www.gilibertohnos.com.ar/chapas_acanaladas.php?m=3 (0221)470-7070  23

Bibliografía

1http://www.maneklal.com/Espanol/SmallScale/CorruRollForm.htm , http://www.curia.com.ar/chapasconformadas.htm
2http://www.zinsa.net/es/blog/el-zinc-mas-alla-de-un-metal
3http://confuzal.com/Donde%20se%20descubri%C3%B3%20el%20zinc%20/
4http://www.aulafacil.com/articulos/sabias/t1462/quien-invento-las-chapashttp://tectonicablog.com/?p=7799
5https://blogs.20minutos.es/yaestaellistoquetodolosabe/tag/william-painter/
6http://gomollon.com/electrones/?p=583 https://www.ecured.cu/Bauxita
7http://www.librosvivos.net/smtc/pagporformulario.asp?idIdioma=ES&TemaClave=1122&pagina=6&est=1
8http://www.construsur.com.ar/IRAM-4374
9http://www.construsur.com.ar/IRAM-1503
10https://www.astm.org/DATABASE.CART/HISTORICAL/A792A792M-03.htm
11http://www.arquitecturaenacero.org/uso-y-aplicaciones-del-acero/soluciones-constructivas/resistencia-al-fuego
12http://www.arquitecturaenacero.org/uso-y-aplicaciones-del-acero/soluciones-constructivas/corrosion
13http://www.fao.org/docrep/003/v5270s/v5270s08.htm
14https://www.linguee.com/spanish-english/translation/resistencia+rayos+uva.html
15https://ingeniero-de-caminos.com/tratamientos-superficiales-del-acero/
16https://es.wikibooks.org/wiki/impactos_ambientales_/fabricaci%C3%B3n_de_hierro_y_acero#lmpactos_ambientales_potenciales
17https://es.scribd.com/doc/46568690/Peso-Especifico-Del-Acero
18http://www.arquitecturaenacero.org/uso-y-aplicaciones-del-acero/soluciones-constructivas/resistencia-al-fuego
19http://ingemecanica.com/tutorialsemanal/tutorialn100.html
20http://ingemecanica.com/tutorialsemanal/tutorialn100.html
21https://www.construmatica.com/construpedia/Coeficiente_de_Conductividad_T%C3%A9rmica
22http://www.rumbonorte.cl/downloads/Tabla%20de%20Calor%20Espec%C3%ADfico.pdf
23https://docs.google.com/document/d/1Yexw9wvAyqxYzzz6-oR7EBpilQ6VhphAkUMQzt1P3jw/edit
24https://books.google.com.ar/books?id=WMtB26fb5eUC&pg=PA129&lpg=PA129&dq=INDICE+DE+REFRACCION+DE+LA+CHAPA&source=bl&ots=UmVYsnIQG5&sig=SV1BhLpXbvNAg0OgE3aA2BnIa8k&hl=es&sa=X&ved=0ahUKEwj5ptDe7s_bAhWCEJAKHQgwCp8Q6AEIQjAG#v=onepage&q=INDICE%20DE%20REFRACCION%20DE%20LA%20CHAPA&f=false
25http://www.metalgrande.com.ar/productos/detalle/chapas.html
26http://www.metalgrande.com.ar/productos/detalle/chapas.html
27http://www.rumbonorte.cl/downloads/Tabla%20de%20Calor%20Espec%C3%ADfico.pdf
28https://docs.google.com/document/d/1Yexw9wvAyqxYzzz6-oR7EBpilQ6VhphAkUMQzt1P3jw/edit
29https://books.google.com.ar/books?id=WMtB26fb5eUC&pg=PA129&lpg=PA129&dq=INDICE+DE+REFRACCION+DE+LA+CHAPA&source=bl&ots=UmVYsnIQG5&sig=SV1BhLpXbvNAg0OgE3aA2BnIa8k&hl=es&sa=X&ved=0ahUKEwj5ptDe7s_bAhWCEJAKHQgwCp8Q6AEIQjAG#v=onepage&q=INDICE%20DE%20REFRACCION%20DE%20LA%20CHAPA&f=false
30http://www.metalgrande.com.ar/productos/detalle/chapas.html
31http://gomollon.com/electrones/?p=583 https://www.ecured.cu/Bauxita
32http://www.librosvivos.net/smtc/pagporformulario.asp?idIdioma=ES&TemaClave=1122&pagina=6&est=1
33https://cumalsa.com/cubiertas-de-chapa-de-zinc/

Chapa acrílica reforzada con poliéster y fibras de vidrio

Síntesis

Básicamente, el PRFV (Poliéster reforzada con fibra de vidrio) es la combinación de una estructura resistente de fibra de vidrio con un material plástico que actúa como aglomerante. El resultado es un conjunto de materiales con un amplio rango de costos y ventajas. 
El refuerzo de fibra de vidrio provee al compuesto: resistencia mecánica, estabilidad dimensional y resistencia al calo. La resina plástica aporta: resistencia química, dieléctrica y comportamiento a la intemperie; una resina formulada especialmente para emplearse en chapas y laminados traslucidos con elevada resistencia a la intemperie y a los rayos U.V. 
La fabricación del producto de PRFV analizarse en tres fases: 1) impregnación del refuerzo fibroso con la resina liquida y eliminación de burbujas de aire. 2) confección del conjunto o compuesto, según las formas y dimensiones de la pieza. 3) endurecimiento del compuesto por polimerización de la resina. Las dimensiones más comercializadas son de: 1.10 mts de ancho y 4 de largo, 1.10 mts de ancho y 6 de largo, etc. (5,6 Bibliografía)

Contexto histórico, social y económico

El desarrollo de los polímeros reforzados con fibra para uso comercial comenzó en los años 30. En el año 1932 la empresa Owens-Illinois produjo a escala industrial las primeras partidas de fibra de vidrio de pequeño diámetro y en 1936 du Pont desarrolló la resina de poliéster. El PRFV (Poliéster reforzada con fibra de vidrio) empezó a utilizarse durante la II Guerra Mundial en la fabricación de componentes para aviones y cubiertas para equipos de radares electrónicos.
Uno de los principales motivos que impulsaron el desarrollo del PRFV como material estructural en esta época fue la necesidad de radomos (un uso típico de los radomos incorporados a los aviones, por ejemplo, es el de proteger el radar meteorológico), debido su mayor permeabilidad a las microondas.
El PRFV se siguió utilizando más adelante y, aunque era caro, la facilidad del material para adquirir formas complejas al moldearlo lo hizo popular entre los diseñadores. En el ámbito civil empezó a utilizarse en la fabricación de embarcaciones, ganando aceptación en la década de los 50, cuando ya se utilizaba para fabricar láminas translúcidas. De ahí se extendió a la industria del automóvil y a la aeronáutica, donde está siendo desplazado por la fibra de carbono, más resistente. El interés por el material compuesto de fibra de vidrio/poliéster para la industria de la construcción comenzó en los años 60 y se fue acrecentando, aunque fue a finales de siglo cuando se empezó a aplicar con cierto criterio en elementos estructurales. 
También se utiliza en la fabricación de chapas, rejillas y tornillería, usados en entornos que requieren resistencia al ataque químico o a la oxidación, y de diversos tipos de canalizaciones y tuberías. (3 Bibliografía)
Actualmente no existen alternativas viables a corto plazo que eliminen por completo las emisiones de Compuestos Orgánicos Volátiles y que no requieran de profundos cambios en las instalaciones y procesos productivos. En la mayoría de los casos, las acciones a tomar consisten en combinar del modo más adecuado posible las distintas tecnologías disponibles.
Los gel coats(Un gelcoat o gel-coat es un material que se utiliza para dar terminado de alta calidad a la superficie de un material compuesto de fibra reforzada) de bajo contenido y baja emisión forman una parte importante del conjunto de herramientas que pueden emplearse para cumplir con las cada vez más estrictas directivas y legislaciones en materia de emisiones al medio ambiente.

Definición ciencia

Las chapas están constituidas por un refuerzo de fibra de vidrio (La fibra de vidrio es un material que consta de numerosos filamentos poliméricos basados en dióxido de silicio (SiO2) extremadamente finos.) impregnado con resina poliéster(es una sustancia pastosa o sólida que se obtiene de manera natural a partir de una secreción orgánica de ciertas plantas) insaturada que contiene un 10% en peso de metacrilato de metilo y un 0,2% en peso de absorbedor de rayos ultravioletas. En una de sus caras se incorpora un velo de vidrio de superficie de 28 gr/m2, impregnado con 150 g/m2 de la misma resina poliéster insaturada empleadas en el esfuerzo. Esta superficie debe estar perfectamente identificada por el fabricante como la cara expuesta a la intemperie. (4 Bibliografía)

Procesamiento

Desde la extracción de los recursos naturales necesarios, hasta la venta del producto como a las realizadas en un puesto de trabajo con una determinada máquina-herramienta. Los procesos de fabricación de materiales compuestos, según los materiales de partida, considerando como objetivos básicos en la fabricación: el buen mojado de las fibras, la distribución uniforme del refuerzo y a veces, el proceso de alineamiento correcto
Existen varias formas de confeccionar un laminado de PRFV (Poliéster reforzada con fibra de vidrio), dependiendo de cómo se dispongan las fibras de vidrio dentro de la matriz plástica. La fibra puede colocarse como una o varias mallas superpuestas, en una dirección o en direcciones perpendiculares, en función de los esfuerzos a los que tenga que estar sometido el material. En ocasiones se utilizan más mallas de fibra como refuerzo puntual en las zonas más solicitadas. También pueden proyectarse las fibras de vidrio con pistola, quedando los hilos dispuestos aleatoriamente dentro del material.

Propiedades

Normas

NORMATÍTULO
UNE-EN1013-2Placas de plástico perfilados traslucidas para cubiertas de una sola capa
EN 59:1977Plásticos. Plásticos reforzados con fibra de vidrio. Ensayo de dureza Barcol.
EN 60:1977Plásticos. Plásticos reforzados con fibra de vidrio. Determinación de perdida de fuego.
EN 63:1977Plásticos. Plásticos reforzados con fibra de vidrio. Determinación de las características de flexión. Método de los tres puntos de apoyos
IRAM 13 391Chapas acanaladas traslucidas dePRFV. Método de ensayo de flexión.

Puesta en obra

Proveedores

MARCAORIGENNOMBREFORMATODISTRIBUIDOR LOCAL
InsumasurArgentinaChapas plásticas  Rollos y hojas. Chapas lisas y conformadas. Sinusoidales, trapezoidales, minionda y autoportante t-90.Insumasur insumasur@insumasur.com
CuriaArgentinaPlanchas translúcidas de fibra de vidrio    Forma ondulada o liso.SODIMAC Https://www.sodimac.com.ar/sodimac-ar/content/a110077/plancha_fibra_vidrio
CascaliteArgentina, Buenos AiresChapa Acanalada Plastica Traslucida  Chapa Acanalada  PROVECOM Https://articulo.mercadolibre.com.ar/MLA-659722313-chapa-acanalada-plastica-traslucida-hoja-110-x-35-metros-_JM
DuraplastCapital federal, buenos aires, argentina.Chapas plásticas  Productos chapas plásticas  Ferrocente   http://www.ferrocenter.com.ar/chapas/plasticas.html#

Bibliografía

1https://s3.amazonaws.com/gdli-prod/resources/companias/4dd1b617f582f510ba7338d9/productos/50c36709e4b013d632a3feb4/Ficha%20Tecnica4%20-%20Chapas%20Plasticas.pdf
2https://prfv.wordpress.com/
3https://matfiserr.com/noticias/historia-de-la-fibra-de-vidrio
4https://insumasur.com/chapas/chapas-plasticas
5LIBRO DE PRFV (plástico reforzado con fibra de vidrio para la construcción. Parte 1) (INTI).
6LIBRO DE PRFV (plástico reforzado con fibra de vidrio para la construcción. Parte 2) (INTI).
7Los plásticos reforzados con fibra de vidrio (editorial americalee).
8Normas Españolas.
9Normas Iram.

Mortero de cal hidráulica natural

Síntesis

El mortero de cal hidráulica natural está compuesto de agua, arena y cal hidráulica, a diferencia del mortero normal de cemento, este mortero no produce sales nocivas, el mortero de cal tiene la cualidad de fraguar en contacto con el agua y por reacción con el dióxido de carbono presente en el aire. Se fabrica a través de la mezcla de estos elementos en proporciones que varían según su utilización y las características que a este se le quieran dar. Todos los elementos que lo componen provienen de la naturaleza. Su aplicación va desde su utilización para cimentaciones, almacenaje de aguas (por su gran capacidad impermeable), revestimientos, fijación de tejas, entre otras.

Contexto histórico, social y económico

La cal hidráulica surge anterior a la época romana para preservar a las construcciones de los efectos negativos producidos por el agua. Es utilizado para huir de las humedades por lo perjudiciales que son para las estructuras y el mal efecto que ocasiona en su aspecto. Este tipo de material proviene de la caliza que es obtenida de las canteras donde la piedra se encuentra mezclada con arcilla. La cocción de la arcilla con el carbonato cálcico de la caliza produce polisilicatos cálcicos que le proporcionan propiedades hidráulicas a la cal, otorgándole la cualidad de impermeabilidad. El uso de morteros de cal hidráulica es anterior a la aparición de los morteros de cemento, la gran mayoría del patrimonio arquitectónico de la Humanidad que ha llegado hasta nuestros días, está realizado con morteros de este tipo, lo cual nos deja ver su gran eficiencia y durabilidad. El mortero de cal hidráulica natural es una mezcla de un conglomerante (la cal hidráulica), un árido (la arena) y agua, que se aplica en forma de pasta, para una vez fraguado, una dos materiales constructivos o constituya una capa continua a modo de revestimiento. Este tipo de mortero tiene un alto grado de impermeabilidad lo cual ha posibilitado su utilización en obras hidráulicas, como se puede observar en los revestimientos de los acueductos romanos. El fraguado de los morteros de cal hidráulica comprenden dos reacciones: la que se debe a la hidratación de las arcillas y aluminatos, es decir al agregado de agua, y la reacción que se produce por la carbonatación del hidróxido cálcico, que ocurre al entrar en contacto con el aire. Este tipo de fraguado favorece, por un lado, la resistencia a corto plazo y su utilización en ambientes fríos y húmedos, y por otro lado, genera un mejor manejo del mortero, permitiendo su adaptación a los movimientos de la estructura. Este tipo de morteros se dejaron de utilizar debido a la aparición de nuevos materiales (como el cemento) además de que su calidad dependía de la composición de las canteras que no era ni uniforme ni constante, lo que en la actualidad, gracias a las tecnologías con las que contamos se pudo solucionar. [1] La caliza de la cual deriva la cal hidráulica es muy abundante aunque su proceso de fabricación utiliza mucha energía para su cocción lo cual es un factor negativo, por el cual se dejó de utilizar este tipo de mortero reemplazandose por el yeso ya que tiene un proceso de fabricación muy similar pero con menor carga energética utilizada. Como cualidad de sostenibilidad, podemos mencionar que al cabo de cientos de años, la cal apagada, después de carbonatarse completamente, retorna a su estado original en la cantera, que es el de roca caliza. El mortero de cal es un producto ignífugo por lo que no emite gases tóxicos.

Definición ciencia

Está compuesto por agua (H2O) arena y cal hidráulica (hidróxido de calcio). La dosificación para revoques y muros es de un volumen de cal por dos volúmenes de arena, más el agregado de agua de amasado que es aproximadamente la quinta parte del volumen total. [2]

Procesamiento

La obtención de la cal hidráulica proveniente de la extracción de la caliza de las canteras, técnicamente no se puede extraer pura, ya que se encuentra mezclada con arcillas (ricas en hierro, aluminio y especialmente sílice) luego se realiza la cocción de la misma entre 800 y 1500 grados, el calcio de la caliza se combina con dichos elementos formando silicatos, aluminatos y ferro-aluminatos de calcio. (Al contacto con el agua estos cuerpos quieren formar hidratos insolubles lo que confieren un carácter hidráulico). Luego de esto se realiza un apagado mediante la aplicación de agua para que esté apta para su uso.[3]

Propiedades

Normas

NORMATÍTULO
UNE-EN 459-1:2016CALES PARA LA CONSTRUCCIÓN: Definiciones, especificaciones y criterios de conformidad
UNE-EN 998-1:2018ESPECIFICACIONES DE LOS MORTEROS PARA ALBAÑILERÍA: Morteros para revoco y enduido
UNE-EN 13351:34:00.000MORTERO PARA RECRECIDOS Y ACABADOS DE SUELOS. Definiciones.
IRAM 1508CAL HIDRÁULICA DE ORIGEN NATURAL, HIDRATADA, EN POLVO PARA CONSTRUCCIÓN
IRAM 1516CALES PARA CONSTRUCCIÓN – DEFINICIONES

Puesta en obra

Proveedores

MARCAORIGEN NOMBREFORMATODISTRIBUIDOR LOCAL
TIGREESPAÑACal Hidráulica Natural NHL-5 TIGREPalet de 64 sacos de 18,5 Kg de peso aprox. Posibilidad de adquirir el producto a granel.TIGRE / Av. Guissona, 9 25200 Cervera (Lleida) ESPAÑA info@cementonaturaltigre.com / www.cementonaturaltigre. com/cal-hidraulica/
CYMPERESPAÑAMorcem CalSaco de 25 kgCYMPER / 912 777 297 – online@cymper.com / www.cymper.com
CUMENESPAÑAMORTERO DE CAL HIDRÁULICASaco de 25 kg.CUMEN / 955 668 320 – info@morterosdecal.com / https://morterosdecal.com/ cal-hidraulica

Bibliografía

1https://morterosdecal.com/cal-hidraulica
2http://www.ipc.org.es/guia_colocacion/info_tec_colocacion/mat_agarre/morteros/morteros_cal.html
3https://ecohabitar.org/pequena-guia-de-la-cal-en-la-construccion-y-su-aplicacion/ -Monika Brüemmer
4https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0056852
5https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0059828
6https://www.en.aenor.com/normas-y-libros/buscador-de-normas/une?c=N0053663
7https://graphenstone.com/pdfs/FT/ES/FTMA_NaturMortar-Base_201801_ES.pdf
8http://web3.morterosdecal.com/wp-content/uploads/2018/01/9.-Ficha-te%CC%81cnica.-Mortero-de-Cal-Hidra%CC%81ulica-NHL-35.pdf
9https://graphenstone.com.es/graphenstone-spain-naturmortarbase.html
10http://www.dcalnatural.com/DCAL_F_Mortero_Grueso.pdf
11https://www.sciencedirect.com/science/article/pii/S0366317519300780 Vicente Flores – Alés María Rodríguez – Romero Isabel Romero – Hermida Luis Esquivias
12https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=N0056852
13https://www.patologiasconstruccion.net/2016/10/la-cal-aplicaciones-1-tipos/ -Carlos Sanjuán-Fernandez
14http://www.cementonaturaltigre.com/cal-hidraulica/
15http://www.cementonaturaltigre.com/wp-content/uploads/Ficha-t%C3%A9cnica-cal-hidr%C3%A1ulica-NHL-5-TIGRE-1.pdf
16http://www.cementonaturaltigre.com/wp-content/uploads/Ficha-seguridad-cal-hidr%C3%A1ulica-NHL-5-TIGRE-1.pdf
17https://riunet.upv.es/bitstream/handle/10251/60200/Memoria.pdf

Tablero fenólico

Síntesis

Tablero que se obtiene mediante encolado de chapas de madera superpuestas de modo que sus fibras formen un ángulo determinado, generalmente recto.Se pueden utilizar como revestimientos chapas de madera decorativa, plásticos, papel impregnado en resinas sintéticas, pintura, tintes, chapas metálicas, etc. Los tableros utilizados en aplicaciones decorativas se rechapan en la cara vista con maderas finas y en la no vista con una madera de menor calidad para equilibrar el tablero.La presentación más común de este material es en tableros de 4×8 piesHYPERLINK “https://es.wikipedia.org/wiki/Pie_(unidad)”, 1,22×2,44 metros, en grosores que van de los 3 mm hasta los 36 mm en casi cualquier tipo de madera, predominando las maderas blandas. Existe una gran variedad de madera contrachapada.

Contexto histórico, social y económico

Los contrachapados se han hecho durante miles de años,su elaboración se ha dado en distintos lugares y circunstancias a lo largo de la historia, sin que estén relacionados entre sí.Según algunos autores, los egipcios habrían sido los inventores del tablero contrachapado. En sentido estricto no es así ya que el contrachapado requiere chapas finas, adhesivos fuertes y presiones importantes, medios que no se encontraban al alcance de esta civilización. Es cierto que se trabajaba el chapado con gran maestría en mueble y otros objetos (son famosas las sandalias de Tutankamon a base de madera y otros materiales). En algún relieve egipcio se aprecia la labor de chapado: con unas grandes cuchillas se corta la madera, mientras en un puchero se cuece la cola animal, después se aplica la chapa encolada sobre la superficie y se aplica presión mediante sacos.
El tablero contrachapado es el primer intento, y acierto, para conseguir madera reconstituida técnicamente, o de ingeniería con un doble fin: obtener un producto más homogéneo y de mayor calidad junto con un mejor aprovechamiento de un recurso forestal cada vez más escaso.Una de las actividades que más hizo adelantar la aparición del contrachapado fue la construcción de claves y pianos a partir del siglo XVII. Las curvadas cajas de armonía y de resonancia de estos grandes instrumentos se solucionaba mediante laminado al hilo de diferentes capas de chapas. También en carpintería y ebanistería se ejecutaban piezas curvas a base de laminados.Existe gran cantidad de posibilidades en cuento a la aplicación de este material hoy en dia,se lo puede ver por ejemplo en una construcción de viviendas con vetas a la vista,mueblería, decoración de interiores, elementos expuestos a la intemperie,recubrimientos estructurales de pisos, muros y techos ,prefabricación de elementos de construcción,se puede utilizar también en moldajes para hormigón y elementos estructurales en la construcción, agroindustria, contenedores y transporte
Los problemas ambientales asociados con la fabricación de tableros y productos de madera particuladaincluyen:Prácticas forestales sostenibles ,emisiones a la atmósfera ,aguas residuales ,materiales peligrosos ,residuos sólidos y Ruido. Cuando se utilizan troncos en vez de residuos de madera como fuente de fibra el principal impacto ambiental de la fabricación atañe al manejo de los recursos forestales. Las cuestiones relativas a las prácticas forestales sostenibles se describen en las Guías sobre medio ambiente, salud y seguridad para el Manejo Forestal. Este tipo de impactos puede reducirse mediante un mayor uso de fibras recicladas o recuperadas en la fabricación de tableros. Los procesos de producción de tableros y productos de madera particulada pueden generar una amplia gama de emisiones a la atmósfera, dependiendo del método empleado. Los contaminantes derivados de los procesos de combustión incluyen materia en partículas (MP), óxidos de nitrógeno (NOx), monóxido de carbono (CO) y óxidos de azufre (SOx) generados por calderas radiantes, generadores de aire caliente y calentadores de fluidos térmicos. Los aldehídos (incluido el formaldehído) y otros compuestos orgánicos volátiles (COV) se liberan al calentarse la madera en secadores de partículas, secadores y prensas de chapado de madera y al enfriarse los tableros prensados.

Definición ciencia

Los materiales que entran en su composición son: chapas o capas de madera, adhesivos y revestimientos.Las chapas son láminas de madera que no sobrepasan los 7 mm de espesor.La gran mayoría de las especies de madera son desenrollables y aptas para obtener chapa pero las más habituales son las ‘maderas finas’ de haya, nogal, roble, chopo, pinos sivestre, insignis y oregón, chopo, abedul o tropicales como okume, embero, mansonia, mongoy, mukaly, samba, sapelly, ukola, etc.Las chapas para tableros se clasifican por la presencia de peculiaridades de la madera (principalmente nudos) en tableros estructurales o bien por su estética y figura en tableros decorativos para cara o contracara.AdhesivosDependiendo del uso y de las características del tablero se pueden usar adhesivos de urea formol para interiores y de urea formol reforzadas con melamina o fenol formaldehído, para exteriores.

Procesamiento

Los troncos se montan en una máquina que los hace girar para realizar el corte, a fin de generar una hoja de chapa, que se corta a las medidas apropiadas. Luego, esta chapa se procesa en una estufa para madera, se parchea o arregla en sus eventuales imperfecciones y, finalmente, se pega a presión(los tableros contrachapados se construyen con un número impar de capas con el grano de capas adyacentes perpendiculares,las capas constan de una sola lamina o dos de ellas paralelas a la dirección del grano) y a una temperatura de 140 °C, formando así el tablero de contrachapado. Estos tableros se pueden cortar, parchear, pulir, etc., según el uso que se le vaya a dar.

Propiedades

Normas

NORMATÍTULO
EN 13.896Comportamiento al fuego
ISO 14001Certificación Sistemas de Gestión Ambiental
ISO 14006Certificación Gestión ambiental del proceso de diseño y desarrollo, Ecodiseño
EN 717-2Determinación de la emisión de formaldehído
ISO 166002Certificación Gestión de la I+D+i
EN-314-1Calidad del encolado

Puesta en obra

Proveedores

MARCAORIGENNOMBREFORMATODISTRIBUIDOR LOCAL
CoamaArgentinaMachimplak*Placascon medidas completamente adaptables a la necesidad del cliente.
*1.22×2.44.
Coama
(54-11) 4871 – 5977 / 5905
www.coama.com.ar
Av. de los Lagos 6855
DACArgentinaMult.Fenolico* Placasfenólicas de 18mm de espesor 
* 275x183cm* 260x183cm
DAC Maderas
(11) 6636-7855

www.dacmaderas.com.ar
Av. 101 Dr. Ricardo Balbín 3342
EggerArgentinaPlaca CompFenolico*Placas fenólicas de 18/11 mm de espesor
*1.22×2.44
Easy
0810-999-EASY
www.easy.com.ar
Av. Brig. Gral. Juan Manuel de Rosas 658
MadersamaArgentinaPlaca Compensado Fenólico* Placasfenolicas6, 9, 12, 15 y 18 mm de espesor
* 2440 x 1220 mm
Madersama
(3751)-531450

taedasa.com.ar
Camarones 3952,CABA

Bibliografía

1www.fenoltec.com (Ficha tecnica)
2https://infomadera.net/uploads/productos/informacion_general_142_contrachapado.pdf (Tableros contrachapados)
3https://infomadera.net/uploads/productos/informacion_general_404_Tableros%20Estructurales_18.07.2011.pdf (“TABLEROS ESTRUCTURALES DERIVADOS DE LA MADERA”)
4www.portalhuarpe (Instalaciones I climatización en la arquitectura)
5http://www.maderasmisiones.com.ar/productos.asp?cat=160(ficha,cualidades propias del fenólico)
6www.fenoltec.com (Ficha tecnica)
7https://core.ac.uk/download/pdf/61519912.pdf(Comparación de ensayos a compresión de madera estructural)
8http://aserraderonelson.com.ar/product/fenolicos/(cualidades del panel fenólico)
9http://publiditec.com/blog/tableros-contrachapados-madera-para-la-construccion/ (Tableros contrachapados de madera para la construcción)
10https://www.woodproducts.fi/es/content/madera-contrachapada (CATEGORÍAS DE CALIDAD DE LA MADERA CONTRACHAPADA)
11http://www.cscae.com/area_tecnica/aitim/actividades/act_paginas/libro/11%20Tableros%20contrachapados.pdf (
12https://www.maderastpf.com/pdfs/Tablero_contrachapado_fenolico_plastificado.pdf, visitado 16/04/2021

Cemento Portland gris normal

Síntesis

El Cemento Portland es un conglomerante hidráulico, patentado por J. Aspdin en 1824.Es producido a partir de la cocción a elevadas temperaturas de elementos expresados normalmente en forma de óxidos (CaO, SiO2, Al2O3 , Fe2O3 ) y pequeñas cantidades de otras materias primas.Dicho conglomerado es un producto de fácil adquisición que, al contacto del agua, tiene la propiedad de reaccionar lentamente y formar una masa endurecida. Ésta última es percibida como una mezcla uniforme, maleable y plástica que fragua y se endurece, adquiriendo una consistencia denominada concreto.Su fabricación se da en tres fases:preparación de la mezcla de las materias primas. producción del clinker.preparación del cemento.Se aplica en gran medida cuando se pretende evitar la corrosión (debido a su alta resistencia). A su vez, desprenden gran cantidad de calor de hidratación por lo que se los utiliza en zonas en donde las temperaturas son bajas (climas fríos).

Contexto histórico, social y económico

Este material fue dado a conocer en 1824 por el constructor Joseph Aspdin en Leeds, Inglaterra; quien le dio el nombre “cemento portland” debido a su aspecto semejante a las rocas que se encuentran en la Isla de Portland.  Aspdin lo definía como una caliza hidráulica: “un material pulverulento que amasado con agua y con arena se endurecía formando un conglomerado muy resistente”. En 1838 se emplea por primera vez en la construcción: Se fabricó un túnel bajo el río Támesis, en Londres. Por otro lado, fue producido a escala industrial por Isaac Johnson; quien en 1845 logra conseguir temperaturas suficientemente altas para clinkerizar a la mezcla de arcilla y caliza empleada como materia prima. A su vez, podría afirmarse que los paradigmas socio-tecnológicos de la época fueron quienes originaron la necesidad de producir este material a gran escala: En la segunda mitad del siglo XIX surge el Intenso desarrollo de la construcción de ferrocarriles, puentes, puertos, diques, etc, este fenómeno incrementó y estimuló la fabricación de este cemento. Aunque, es recién en el año 1900 que los cementos portland se imponen notablemente en las obras de ingeniería y generan el veloz descenso de consumo de cementos naturales. Actualmente es el material que más se utiliza en la construcción gracias a su gran resistencia y durabilidad; una de sus principales características es la de fraguar y endurecerse al entrar en contacto con el agua. Se usa generalmente en las obras de ingeniería: Es especialmente apto para la prefabricación, estructuras pretensadas en las que se requiera un endurecimiento más rápido de lo usual, obras sanitarias, puentes de concreto pretensado, losas, pavimentos, columnas, zapatas, escaleras y demás. Su resistencia es determinada por la relación agua, cemento y la magnitud de la hidratación.Por otro lado, la mayor producción de este tipo de cemento se produce en los países más industrializados: La antigua Unión Soviética, China, Japón y Estados Unidos son los mayores productores. En menor medida Alemania, Francia, Italia, España y Brasil son también productores importantes.En cuanto a problemas ambientales este material consta de compuestos inorgánicos que no son biodegradables; si bien no hay evidencias que sugieran bioacumulación hoy en día es el principal material cementante usado en las obras, por lo tanto, se produce de forma masiva (en el mundo se producen aproximadamente 4 billones de toneladas anuales de Cemento Portland): Esto último genera un gran problema desde el lado energético; para su fabricación se necesitan alcanzar temperaturas superiores a 1400-1500ºC) y medioambientales (la obtención de materias primas ocasiona la destrucción de canteras naturales y la fabricación del clínker da lugar a la emisión de diferentes gases -CO2, NOx, etc.- en la atmósfera).

Definición ciencia

En términos de organización general podría decirse que este material se conforma de la siguiente manera: Clinker de cemento (65997-15-1) 91%.Caliza (1317-65-3) 5%.Yeso (7778-18-9 4%.Por otro lado, las materias primas para la producción del portland son minerales que contienen:óxido de calcio (44 %),óxido de silicio (14,5 %),óxido de aluminio (3,5 %),óxidos de hierro (3 %)óxido de magnesio (1,6 %).

Procesamiento

La fabricación del cemento portland es una actividad industrial de procesado de minerales que se divide en tres etapas básicas: preparación de la mezcla de las materias primas.producción del clinker.preparación del cemento.1. El proceso empieza por la obtención de las materias primas principales para la fabricación del cemento, las cuales son extraídas de canteras o minas que generalmente están próximos a la planta.Las piedras extraídas son transportadas por camiones volquetes o bandas transportadoras a la planta de trituración en donde son reducidas a un tamaño adecuado para su almacenamiento. Posteriormente, dichas materias primas se muelen y homogenizan hasta quedar reducidas a un polvillo fino llamado harina o crudo. 2. El crudo es introducido a un intercambiador de ciclones donde se precalienta al entrar en contacto con los gases provenientes del horno. Finalmente, este último es calentado en un horno especial, con forma de un gran cilindro (llamado kiln) que rota lentamente. La temperatura aumenta a lo largo del cilindro hasta llegar a unos 1400 °C, que hace que los minerales se combinan pero sin que se fundan. Al salir del kiln, el crudo  sufre una serie de reacciones físicas y químicas que dan lugar a la formación de un nuevo material llamado “Clinker”.3. La molienda es la última etapa en el proceso de fabricación del cemento; dentro del molino el Clinker es dosificado: La rotación del molino hace que las partículas choquen contra los elementos molturadores y las placas del blindaje interno del molino, obteniéndose un material de gran finura. El producto que se obtiene de este proceso es lo que llamamos cemento.

Propiedades

Normas

NORMATÍTULO
NMX-C-111-ONNCCE-2014.Building industry – Aggregates for hydraulic concrete – Specifications and test methods. 
NMX-C-083-ONNCCE-2014.DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DE ESPECÍMENES. 
IRAM 1612.Cemento. Método de ensayo para la determinación de la consistencia normal.
IRAM 1504.Instituto del Cemento Portland argentino. Cemento portland. Análisis químico
IRAM 50000PCR. Ing. Roberto J. Torrent.
NTC 30Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC).
NTP 334.009ASOCIACIÓN DE PRODUCTORES DE CEMENTO (ASOCEM)

Puesta en obra

Proveedores

MARCAORIGEN NOMBREFORMATODISTRIBUIDOR LOCAL
Cemento Portland tipo I. 
Argentina.
Cemento Portland gris.
Bolsas o granel de 50 kg
PCR SA.011.41249800
Cemento PortlandNormal CPN30.
Argentina.
Cemento PortlandNormal CPN30.
Envases de 50 Kg.

Loma Negra.(011) 4319-3000.
Cemento Portland Normal. Uso Gral. IRAM 50.000

Argentina.

Cemento Portland Normal. CP 40.


Envases de 50 Kg.


Holcim.0800-666-2218
Cemento Portland NormalIRAM 50.000/1, CPN40 (ARS)

Argentina.
Cemento Portland NormalIRAM 50.000/1, CPN40 (ARS)

Granel 50kg.


Cementos Avellaneda.0800 333 2363

Bibliografía

ICPA: Instituto del Cemento Portland Argentino. Normativas de Referencia: Cementos. http://www.actualizarmiweb.com/sites/icpa/index.php?IDM=197&mpal=11&alias=Normas%20y%20Reglamentos
NORMA ARGENTINA IRAM 11601. Tablas de propiedades térmicas de materiales de construcción http://klima.com.ar/IRAM_11601.pdf
CEP ATAE FADU. Experimentación y Tecnología Apropiadas a la Emergencia. http://cepfadu.blogspot.com.ar/
Guillermo Enrique Gonzalo; Viviana María Nota. Pautas y Estrategias para una Arquitectura Bioclimática. https://www.researchgate.net/publication/280385657_Metodologia_para_el_Diseno_Bioclimatico_Sustento_informatico_para_eleccion_de_pautas_y_estrategias
Fernandez Diez, P. Propiedades térmicas de los materiales. http://files.pfernandezdiez.es/IngenieriaTermica/Tablas/PDFs/Tablas.pdf
Zumelzu, E y Lovengreen V. Influencia de la dosificación y rugosidad superficial en la reflectancia de la radiación UV-B sobre superficies de hormigón. http://cybertesis.uach.cl/tesis/uach/2004/bmfcic118i/doc/bmfcic118i.pdf
De la Cruz Alta, H. Efectos del curado en las propiedades mecánicas del hormigón con cementos Portland. http://repositorio.usfq.edu.ec/bitstream/23000/7903/1/141072.pdf
J. F.Colina. PRINCIPALES CARACTERISTICAS DE LOS CEMENTOS PORTLAND NACIONALES. https://digital.cic.gba.gob.ar/bitstream/handle/11746/798/11746_798.pdf?sequence=1&isAllowed=y
UNIVERSIDADE DA CORUÑA. Materiales de Construcción: Ciencia y Tecnología de los Materiales. ftp://ceres.udc.es/ITS_Caminos/1…1P/1P_03.03_07_08_Ligantes.Cementos.pdf
ANCAP. FICHA DE SEGURIDAD – CEMENTO PORTLAND NORMAL. https://www.ancap.com.uy/innovaportal/file/1720/1/fs-portland-cpn-40.pdf
Sabesinsky Felperin, M. El cemento portland en la consistencia del hormigón fresco. Finura de molido óptima. file:///E:/Downloads/1194-1596-1-PB.pdf
Pineda Morales, V. FICHA TECNICA DEL CEMENTO PORTLAND GRIS. contratacion.huila.gov.co/up_loads/?Archivo=20130719164226.pdf
PACASMAYO. Ficha Técnica: Cemento portland Tipo I. http://www.arenerajaen.com.pe/web/uploads/productos/pdf/f_477_Tipo%20Portland%20Tipo%20I%20-%20Agosto%202017.pdf
De León Malacara, B. “Efecto de los perfiles de concentración de cloro y azufre en la estabilidad mecánica y dimensional de morteros de cemento Pórtland substituido con desecho geotérmico”, Tesis de Maestría. Cinvestav-Mexico, 2007.
Gómez-Zamorano, L. Y., Escalante-García, J. I. “Hidratacion y microestructura de cemento Portland sustituido parcialmente con silice ultrafina”. CONACYT- México, 2009.
Íñiguez-Sánchez, C. A. “Análisis de la solución de los poros en pastas de Cemento Pórtland Ordinario parcialmente reemplazado con desecho geotérmico”. Tesis de Maestría. UANL-Mexico, 2008.

Chapa galvanizada

Síntesis

La Chapa Galvanizada está compuesta de Acero (Fe + C) y Zinc (Zn). Este último consiste en un recubrimiento final para la protección del óxido contra el medioambiente. En cuanto a su fabricación, primero se elaboran las piezas de acero individuales en la forma deseada a una temperatura de 1535º. Luego se protege al acero frente a los riesgos de corrosión mediante la Galvanización, un recubrimiento generado a partir una unión metalúrgica con el acero formando capas de aleación entre el acero y el zinc de diferente composición de cada uno de ellos. Existen dos formas de aplicación de esta protección galvanizada: por un proceso que se aplica a bobinas de espesores inferiores a 2,5mm en procesos continuos por inmersión en caliente o por electrodeposición; o en procesos que se aplican a estructuras y/o perfiles pesados por inmersión de las piezas en cubas. Estos materiales se pueden encontrar en forma de bobinas o ya cortados como chapas de 1.10×3.00 mts. en adelante (lisas, onduladas, trapezoidales) o procesados como perfiles estructurales, cerramientos, carrocerías, conductos de aire acondicionado, cubiertas, estanterías metálicas y paneles entre otros.

Contexto histórico, social y económico

La chapa Galvanizada surgió en Inglaterra en 1820, y fue inventada por el arquitecto británico Henry Robinson Palmer, siendo originalmente de hierro forjado. Este invento, resultó tener propiedades ingeniosas para la época, siendo resistente a la corrosión, fácil de transportar, ligero y fuerte, siendo utilizado en un principio para estructuras en improvisación para los trabajadores semicalificados. En el año 1829, éste recibió una patente para láminas “metálicas onduladas o corrugadas”, del cual su descubrimiento tendría un impacto dramático en el diseño industrial y la galvanización años más tarde. Pero el proceso de “Galvanización” fue patentado años después por Tranquille Modeste Sorell, en el año 1836 en Francia.
La historia de la galvanización comienza hace más de 300 años, cuando un alquimista y químico ideó una razón para sumergir el hierro limpio en zinc fundido y, como resultado, formó una capa plateada brillante sobre el hierro. Este fue el primer paso dentro del mundo de la galvanización. En 1742, un químico francés llamado Melouin presentó un documento a la Real Academia Francesa en el que describía como se podía obtener un “revestimiento” sobre el hierro sumergiéndolo en Zinc fundido. Este descubrimiento se extendió a través de círculos científicos y su primera aplicación fue usarlo como un revestimiento protector barato para utensilios domésticos. Estos productos eran bastante conocidos en partes de Francia durante la segunda mitad del siglo XVIII. En 1780, Luigi Galvani, descubrió el fenómeno eléctrico de la contracción de los músculos de las patas de una rana cuando se contactaban con dos metales diferentes, el cobre y el hierro. Galvani concluyó incorrectamente que la fuente de la electricidad estaba en la pata de la rana. El término “galvanización” comenzó a aparecer en el léxico, relacionado en parte con el trabajo realizado por Michael Faraday.
En 1836 T.M. Sorel, obtuvo la primera de numerosas patentes para un proceso de recubrimiento de acero sumergiéndolo en zinc fundido después de limpiarlo por primera vez. Proporcionó al proceso su nombre “galvanizado”. Originalmente, este término no se refería al proceso de recubrimiento sino a la propiedad fundamental que ofrecía éste. En cuanto a su uso, la chapa de acero galvanizado fue incorporada al uso militar durante la 1º y 2º Guerra Mundial en los techos de las barrancas. Actualmente, el acero galvanizado se utiliza en la construcción, el transporte, la agricultura, en la transmisión de energía (iluminación/ torres de alta tensión), conductos de ventilación, plantas industriales, equipamientos, depósitos, artículos varios, entre otros

Definición ciencia

La Chapa Galvanizada está compuesta de una base de Acero (Fe + C) y el agregado de un 98-99,95% de  Zinc puro (Zn). Las láminas de acero son sometidas a un proceso electroquímico por el cual se cubre un metal con otro para proteger la superficie del metal del medioambiente. El procedimiento más común consiste en depositar una capa de Zinc (Zn) sobre Hierro (Fe) ya que al ser el Zinc menos noble que el hierro y generar un óxido estable, protege al hierro de la oxidación al exponerse al oxigeno del aire.  El zinc resiste a una velocidad muy lenta, con larga vida útil, da un aspecto agradable y protege de ataques corrosivos como escudo continuo y duradero entre el acero y la atmosfera.

Procesamiento

Antes de comenzar el proceso de galvanización se cortan las piezas  con un formato de 1.10×3.00mts (standard) o bien, cortado a medida con el  ancho de 1.10mts. El proceso de galvanización consiste en primera instancia, eliminar los residuos de aceites, grasas, pinturas y lacas por medio de productos desengrasantes  como primera medida de limpieza a las piezas. Luego, se prosigue a realizar una limpieza en agua para evitar el arrastre del líquido desengrasante al decapado. Una vez limpio, se remueven los óxidos y calaminas de las piezas de hierro o acero con soluciones compuesto de un 30% de cloruro de amonio y Zinc y sumergido a 65-80º C aprox.  Hecho esto, se enjuaga con agua nuevamente para evitar el arrastre del ácido y se transportan las piezas a una zona de secado en caliente antes de ingresarlas en el baño de zinc mismo: se introducen la piezas en un baño de zinc fundido a una temperatura de 450º C  durante unos 4-5 minutos, dónde se forma una serie de capas de aleación por una reacción hierro-zinc. La velocidad de dicha reacción es muy rápida al inicio (El espesor principal se forma durante este proceso) y luego se ralentiza y el espesor del recubrimiento no aumenta significativamente. En piezas mayores, el tiempo es más prolongado ya que se requiere que el zinc penetre en los espacios internos. Una vez realizado el baño de zinc, se dejan las piezas enfriar al aire, luego van al área de acabado para eliminar rebabas, adherencias o restos de sales. Por último, se realiza la inspección y control de calidad mediante equipos magnéticos diseñados para medir los espesores del recubrimiento, el aspecto superficial y el acabado tanto en el acero como el recubrimiento.

Propiedades

Normas

NORMATÍTULO
IRAM-IAS U 500-214 Chapas de acero al carbono y de baja aleación para uso estructural, cincadas o revestidas de aleación cinc-hierro por el proceso continuo de inmersión en caliente/ chapas conformadas para techos, cerramientos, perfiles y aplicaciones.
UNE EN ISO1461:2010 Recubrimientos de galvanización en caliente sobre piezas de hierro y acero. Especificaciones y métodos de ensayo. / Productos acabados de hierro y acero en zinc fundido.
ASTM A653 / A653M – 18Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process / Láminas de acero, recubiertas de zinc galvanizadas

Puesta en obra

Proveedores

MARCAORIGENNOMBREFORMATODISTRIBUIDOR LOCAL
Ternium SiderarArgentinaChapa de Acero GalvanizadoAcanalada / Trapezoidal
1.10 mts x hasta 13 mts.
En espesores C – 25 y C – 27
CURIAAvellaneda: Av. Hipólito Yrigoyen 1101Quilmes: Av. Calchaquí 693
www.curia.com.ar
SteelMedEspañaChapa GalvanizadaMedidas (en mm): 2000×1000/3000×1500/4000×1000/5000×1500/6000x1500Espesores (en mm) : 0,5/0,6/0,8/1/1,2/1,5/2/3/4
GRUPO HIERROS ALFONSOAvda. San Juan de la Peña, 9050015 – Zaragoza976 517 400
www.grupohierrosalfonso.com
Ternium SiderarArgentinaChapa de Acero Galvanizado1,00×2,00 mts.1,22×2,44 mts.Calibre: 10/12/14/16/18/20/22/25/27/28/30Espesores (mm): 3,20/2,50/2,00/1,60/1,25/0,90/0,70/0,50/0,40/0,35/0,30HIMAN ACEROSPalmira 170 Dorrego,Guaymallén – Mendoza.Tel: (0261) 431-7417
www.himanaceros.com.ar
Ternium SiderarArgentinaChapa Revestida Galvanizada AcanaladosEspesor: 0,40 y 0,50mmBobinas – 1000x1200mmEspesor: 0,30/0,36/0,40/0,50mmFlejes – 10 a 610mmEspesor: 0,30/0,36/0,40/0,50mmHojas – 1000x1200mmEspesor: 0,30/0,36/0,40/0,50mmINSUMASUR S.AAv. Monteverde 3325 – Parque Industrial Almirante Brown- Burzaco – Buenos Aires.
insumasur.com

Bibliografía

1Apuntes de las teóricas de la materia ,  www.insumasur.com
2leedsgalvanising.co.uk/index.php/history-of-galvanising/ y http://www.tubecon.co.za/en/technical-info/tubecon-wiki/hot-dip-galvanized-pre-galvanized-and-electro-galvanized-steel.html en.wikipedia.org/wiki/Corrugated_galvanised_iron
3www.kloecknermetals.com/blog/the-history-of-hot-dip-galvanizing/
4www.galvanizing.org.uk/hot-dip-galvanizing/history-of-galvanizing/
5www.environment911.org/Environmental_Issues_With_Galvanizing
6www.arquitecturaenacero.org/uso-y-aplicaciones-del-acero/materiales/aceros-galvanizados
7www.galvanizing.org.uk/galvanizing-process/ – Explicación del proceso de galvanización
8www.siderurgia.org.ar/index.php , sitio web de IAS (Instituto Argentino de Siderurgia), Normalización del acero.
9www.une.org/ – Sitio Web de la Asociación Española de Normalización (UNE), Normalización del recubrimiento de galvanización.
10www.astm.org/Standards/A653.htm – Sitio Web de ASTM, Normalización internacional para la chapa de acero galvanizado.
11mipsa.com.mx/dotnetnuke/Productos/Lamina-galvanizada-lisa – Densidad del acero galvanizado
12https://www.inti.gob.ar/cirsoc/pdf/area300/reg_301estructurasAcero.pdf
13https://www.adbarbieri.com/hubfs/WEB2018/especificaciones-tecnicas/acero-drywall.pdf – Propiedades mecánicas del acero galvanizado
14https://ingemecanica.com/tutoriales/tabla_dureza.html#brinell – Información de la Dureza en los materiales
15www.academia.edu/20014612/INFORMACIONDE_PROPIEDADES_DE_ACERO_GALVANIZADO
16es.scribd.com/doc/115765490/Acero-Galvanizado – Propiedades térmicas del acero galvanizado
17es.scribd.com/doc/308093444/Tabla-de-Indices-de-Refraccion-de-Materiales – Refracción de Materiales