Archivos de la categoría Base Carbono

Tubo de acero y polietileno

Síntesis

Se trata de material compuesto que consiste en un tubo de acero de 0,8mm con una capa de adhesivo la cual le permite incorporar un revestimiento de polietileno de media densidad de 2,3mm lo que le brinda a la estructura metálica interior una protección anticorrosiva sin discontinuidades además de una alta resistencia al aplastamiento y las pinchaduras.

Se utiliza para conducción y distribución de gas natural y gases licuados en viviendas e industrias y su diámetro varía entre 20 Ø, 25 Ø, 32 Ø, 40 Ø, 50 Ø, 63 Ø, 75 Ø, 90 Ø, 110 Ø mm según su uso, en Argentina se comercializan en una longitud de 4 metros.

El recubrimiento de polietileno pertenece a la familia de los termoplásticos, los cuales son un tipo de plástico que mediante la aplicación calor sufren una unión térmica molecular entre los tramos de tubo lo que garantiza hermeticidad y más seguridad en el sistema.

Contexto histórico, social y económico

No es posible detectar la exacta ubicación geográfica de la invención de las tuberías de acero y polietileno, ya que es el resultado de una evolución constante en los materiales, la industria de las tuberías y la tecnología de uniones materiales. El uso de las tuberías de acero solicitaba excesivo mantenimiento y reparación lo que resultaba costoso debido a que el acero sin tratamiento se corroe fácilmente. La solución a tal problemática fue recurrir a una protección anticorrosión que brinda el polietileno, el mismo se ha utilizado como material para tuberías desde la década del 50´ en Estados Unidos y Europa. Lo novedoso de este material es la técnica de termofusión que es una manera de resolver las uniones con los accesorios correspondientes mediante la aplicación de calor y utilizando el propio material, es como una soldadura, simple y rápida.

El uso de las primeras tuberías se remonta a Oriente Medio e India, materializadas en losa de barro en tramos cortos unidas con un adhesivo de betún. En cambio, en la Antigua Roma ya se construían acueductos de piedra en las civilizaciones para transportar agua mediante su desnivel, pero resultaba poco práctico.

El primer uso de tuberías propiamente dichas fueron metálicas y data de Egipto (2000 a.c) de hierro fundido para transportar agua. Con el avance de las tecnologías y los procesos productivos se generaliza en 1950 el uso de tuberías de polietileno para aplicaciones de baja presión como sistema de riego y drenaje.

Luego con la mejora del material se comenzó a emplear para instalaciones de alta presión como agua potable y gasoducto, mayormente se intensificó su uso por las grandes ventajas que ofrece el polietileno respecto a los demás materiales utilizados hasta el momento para las tuberías. Con la introducción de nuevos materiales y el desarrollo de técnicas como de extrusión por soplado, se compone un nuevo tipo de tubería que inicialmente tiene el propósito de servir para instalaciones de agua y que después se extendió su uso al de tuberías de gas con una innovadora tecnología de termofusión que facilitó su colocación, mejoró la durabilidad del material y del sistema al oponer máxima resistencia a la corrosión, impacto, aplastamiento y perforado, asimismo facilita su transporte por su liviandad.

La gran ventaja que posee el tubo es que, al ser un material compuesto, ambas de sus partes son reciclables individualmente, tanto el acero como el polietileno. La unión entre los materiales se hace mediante una película de pegamento que luego de ser extraída permite que se puedan separar los dos materiales y reciclar por su cuenta. El acero es un material que puede ser producido con bajo impacto ambiental, sin desperdicios, y es 100% reciclable, además de tener una vida útil mas extensa, flexible y respetuosa con el medioambiente. En la fabricación del acero se general emisiones atmosféricas que pueden aumentar el proceso de degradación del suelo, el aire y el agua, también genera compuestos nocivos y contaminantes como el monóxido de carbono (CO), el óxido nitroso (N₂O) y el dióxido de azufre (SO₂), que contribuyen a la lluvia ácida, afectan al suelo y la vegetación.[4] El utilizar acero reciclado en los procesos de fabricación de nuevos elementos reduce el consumo de energía un 70%, ya que evita la repetición del proceso de extracción, el transporte de nuevas materias primas y el consumo de agua se reduce un 40%.

Mientras que el polietileno posee la ventaja de reciclarse mediante su fundición y volverlo a usar en la fabricación de otros elementos, además de que se puede utilizar como fuente de energía. Existen tres maneras de reciclar el polietileno: reciclaje mecánico en el cual se cortan las piezas de plástico en pequeños pedazos y luego se trabaja como materia prima, reciclaje químico donde se degrada el plástico aplicándoles calor y reciclaje energético que consiste en la combustión del plástico para obtener energía. El método de reciclaje empleado para reciclar el polietileno de media densidad que recubre el tubo de acero es el mecánico.

Definición ciencia

El acero es una aleación de hierro y carbono, contiene otros elementos de aleación como manganeso, sílice, níquel, cromo, etc. Dependiendo las propiedades físicas y mecánicas que se deseen. Los aceros empleados para tuberías son al carbono con un porcentaje de Fe: 98%, C: 0,05% a 2%, Mn: 0,25% a 1,65% contiene otros elementos aleantes y el acero inoxidable compuesto principalmente de Fe: 70,8%, C: 0,08% y cromo 20%..Polietileno es un polímero sintético termoplástico que se obtiene mediante la polimerización del etileno y su composición química es C: 85% a 94%, H: 6% a 15% e impurezas 0,01% a 1%.

Procesamiento

El mineral de hierro que se extrae de la naturaleza y tiene una parte pura y otra de impurezas. Para fabricar acero se echa en el alto horno una mezcla de mineral de hierro y un combustible llamado Cok que separa las impurezas del resto de material. Una vez hecho esto, el resto será arrabio (hierro casi puro con un bajo contenido de carbono). El carbono se acopla al acero en la combustión con el cok y se forma el acero líquido. Este arrabio será el acero en estado líquido y el que se utilizada en el siguiente proceso que será darle forma por extrusión.

El petróleo se coloca en torres de acero que separa los hidrocarburos según su densidad por presión y calor, el llamado cracking del petróleo. De ahí surge el etileno que se somete a un proceso de polimerización que desarrolla en un reactor a 99° C, el etileno en estado gaseoso en contacto con catalizadores como el cloruro de titanio se transforma en plástico. El plástico se pasa por la maquina extrusora donde se calienta y posteriormente se plastifica hasta salir por el cabezal donde está la boquilla la cual define el diámetro y el espesor final del tubo. La unión entre ambos tubos (acero y polietileno) se da por una fina película de pegamento que los une entre sí.

Propiedades

TIPO DE PROPIEDADPROPIEDAD O CARACTERÍSTICA VALOR TÍPICO
Físico – químicaDensidad 
Resistencia ambiental ¹* 
MecánicaLímite de elasticidad
 Fuerza de Tensión
Térmica Punto de fusión
Punto de ebullición
Óptica, Acústica, entre otrasMaterial opaco
Alta conductividad eléctrica
Reciclable
NORMATÍTULO 

Puesta en obra-

Proveedores

DISTRIBUIDOR LOCAL FORMATO NOMBREORIGENMARCA



Bibliografía

Disco Flap de desbaste diamantado lija

Síntesis

Contexto histórico, social y económico

El disco flap diamantado de desbaste es un accesorio que se le agrega a una maquina amoladora angular. Dicho disco se comercializa en tamaños de 4” o7”. Este accesorio sirve para realizar la función de arranque, corte o rayado de la superficie por acción mecánica. Esto es posible gracias al grano abrasivo, el cual es una partícula de mineral, en este caso diamante, molido organizado de una manera específica. Es la parte del abrasivo la que entra en contacto directo con el material a lijar. Los discos flap presentan un conjunto de múltiples hojas de tela abrasiva montadas sobre una base con gran poder de desbaste y un suave acabado de la superficie. [1]

Este material no tiene un lugar de origen específico en el mapa, pero fue desarrollado por una empresa llamada “Saint-Gobain Abrasives” ubicada en Brasil-Sao Paulo, bajo una de sus marcas llamada “Norton”. El descubrimiento del disco flap de desbaste sirvió para obtener mejores resultados al momento de hacer una remoción de algún material, logrando un acabado más rápido y pulcro. Al ser una herramienta que puede actuar en distintos tipos de materiales, su crecimiento en el mercado le ayudó dándole lugar a diferentes discos flap de desbaste. [2]
Como mencionamos anteriormente, este material no tiene lugar de origen, pero si nos adentramos mucho más en la historia, nos vamos a la edad prehistórica, cuando los abrasivos se utilizaban rozando piedras de cierta dureza contra otras, para conseguir darle forma a las armas y herramientas. El principal inventor de esta técnica, fue el hombre primitivo que la utilizaba para poder obtener un acabado rebarbado y pulido.
La evolución de los discos flap de desbaste lija fue muy lenta, al pasar los años, los artesanos trataban de aglomerar granos de materiales abrasivos sobre soportes flexibles, pretendiendo que se fijara mediante adhesivos, y ahí es cuando se comenzó a ver los discos en sus primeros ensayos. Llegando al siglo XIX, el geólogo Friedrich Mohs descubrió la dureza de los materiales, siendo en gran parte de vital importancia para la fabricación y el avance en los discos abrasivos. Este gran descubrimiento nos sirvió para poder utilizar los minerales según sus características en distintos tipos de materiales y funciones. El propósito de esta herramienta siempre fue así como en la antigüedad, el de eliminar el material sobrante de una pieza para obtener la forma y las dimensiones que deseamos conseguir, Los discos como los conocemos actualmente comenzaron a producirse y utilizarse alrededor del año 1975. La aparición y avance tecnológico de dicho material introdujo una mayor eficiencia en el proceso del desbaste y acabado en los materiales, como así también, se consiguió una mayor durabilidad de la herramienta, gracias al uso de diamantes sintéticos en su estructura, ya que esto le da mayor vida útil que otro mineral, y como así también una mayor reducción de residuos al momento de utilizarlo. Actualmente, la utilización de estos discos abrasivos abarca varios sectores productivos, teniendo entre ellos; La metalurgia, náutica, mármol, acero, madera, etc.
El costo de estos discos, pueden llegar a ser un poco costosos, tanto por la tecnología utilizada como por el mineral, que en este caso es el diamante, sin embargo, su precio lo compensa con su rendimiento en comparación con otros discos de desbaste. [3]
El disco flap abrasivo diamantado puede tener un impacto ambiental significativo debido a varios factores. La minería en este caso puede provocar daños ambientales, como la degradación del suelo. Sumándole que su fabricación y uso, generan emisiones de carbono (compuesto del diamante), el cual contamina el aire y el agua.
Al utilizarse diamantes sintéticos en la fabricación de los discos, se puede minimizar el uso de energía al momento de la producción de nuevos discos utilizando los materiales reciclados de estos mismos, la calidad de los materiales utilizados también se refleja en su calidad, motivo por el cual su sustentabilidad es mayor. [4]

Definición ciencia

El Disco Flap de desbaste diamantado lija está compuesto por una serie de láminas de granos abrasivos. Estos granos pueden ser de óxido de aluminio natural o sintético, carburo de silicio, zirconio, cerámicos o de diamante, siendo unidos por un agente aglutinante, utilizando un material de soporte para ser fijados. Los granos que se utilizan en este caso son de diamante. Estos discos están disponibles en distintos tamaños y granos para un uso en específico, adaptándose a ciertos materiales y necesidades que se requiera. Son utilizados en diversas aplicaciones industriales y de manera aficionada debido a su eficacia en el desbaste. [5]

Procesamiento

El proceso de fabricación de estos discos se inicia moliendo minerales o diamantes sintéticos, para luego tamizarlos, así conseguir tamaños variados de partículas abrasivas. Dichas partículas son tratadas térmicamente y clasificadas en base a sus dimensiones. Cuanto más pequeño sea el grano, más delicado va a ser el acabado final del material a tratar con este disco de desbaste diamantado. Una vez clasificados, estos granos se esparcen sobre una superficie de soporte tratada con una resina o un material similar de
adherencia, formando así paños de lijas. Dichos paños son cortados en tiras para obtener pequeñas piezas, las cuales se ordenan radialmente y montadas levemente sobre un disco plástico, de fibra de vidrio o metal, que resista mecánicamente la fuerza centrífuga en la cual es usado este disco. [6]

Propiedades

Normas

NormaTítulo
ANSI B7.1Instituto Nacional Estadounidense de Estándares
ISO 9001Organización Internacional de Normalización
ISO 14001:2004Sistemas de gestión ambiental
ABNT 12413Asociación Brasileña de Normas Técnicas
IRAM 12431Instituto Argentino de Normalización y Certificación

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
NORTON
(Saint-Gobain)
https://www.nortonabrasiv
es.com/es-ar
MAIL:
sga.ar.norton@saint-
gobain.com
DISCO
(Unidades mayoristas)
Discos de
desbaste
diamantados
BrasilNORTON
KGS
(Swiss Diamond Technology)
https://www.kgs.swiss/
MAIL:
E sales@kgsdiamond.com
Discos laminados de 4.5”Discos
abrasivos
SuizaCECROPS
(CARAT NEDELAND B.V.)
https://www.carat-
tools.nl/en/carat-diamond-
flap-disc-%C3%B8-125-mm
MAIL:
info@carat-tools.nl
CARAT Discos laminados de 5”Disco flap
diamantado
Paises BajosCARAT
ABRASIVOS BELGRANO
https://abrasivosbelgrano.
com.ar/producto/discos-
flap-diamantado-115-mm-
60/
Discos laminados de 4”Disco flap
diamantado
Argentina

Bibliografía

https://www.demaquinasyherramientas.com/herramientas-electricas-y-accesorios/discos-para-herramientas-electricas
https://werkindustrial.com/2021/01/28/historia-de-los-abrasivos-una-herramienta-fundamental-para-el-ser-humano/
https://vsmabrasivos.com/latam/prehistoria-abrasivos/
https://www.abracom.es/es/blog/post/27-discos-abrasivos-tipos-clases-ymateriales.html
https://www.brementools.com/insumos-y-accesorios/discos
https://www.demaquinasyherramientas.com/herramientas-de-corte/que-son-los-discos-flap-tipos

Madera transparente

Síntesis

Actualmente en estado de desarrollo e investigación, la “madera transparente” está compuesta por celulosa, hemicelulosa y lignina, esta última es un polímero natural, que le da rigidez y opacidad a la madera. La propuesta para transparentar la madera y que no pierda rigidez quitando la lignina, fue primero sumergirla en solución hirviendo de, hidróxido de sodio y sulfito de sodio para posteriormente usar agua oxigenada, así lo que resulta removido son las moléculas de su interior, llamadas cromóforos, las cuales absorben la luz. Aplicado el peróxido, se recurre a un material resinoso epoxi que penetra en la fibra y la transparente como etapa final.

Gracias a su resistencia, aislación y durabilidad, algunas aplicaciones son en: puertas, ventanas, paredes, techos, también en paneles solares. Respecto a su venta, aún no es un material que su proceso esté comercializado, ni siquiera industrializado en ninguna escala (doméstica e industrial)[15]

Contexto histórico, social y económico

INTRODUCCION

Si bien podemos encontrar mucha documentación respecto a quienes iniciaron con la investigación de la madera transparente, los primeros trabajos importantes fueron llevados a cabo por un grupo de científicos liderado por Lars Berglund, en el Real Instituto de Tecnología de Estocolmo, Suecia, durante la década de 1990.
En el caso de este material, no fue ni una invención ni un descubrimiento, sino más bien una suerte de innovación, dado que el material sigue siendo madera, solo que intervenida químicamente. Esta intervención dio varios beneficios a este más allá de la estética, como su mayor resistencia, su aislamiento térmico y acústico, entre otros.[14]

DESARROLLO

El equipo de investigadores del Real Instituto de Tecnología de Estocolmo, en un principio la idea de crear madera transparente nació a partir de combinar diversas propiedades naturales como la de la madera pero con capacidades de los materiales transparentes, tales como el vidrio. La finalidad original de esto era crear una opción más sostenible y estéticamente atractiva al vidrio y algunos otros materiales transparentes.[2]
El proceso para llegar a la madera transparente consiste en eliminar la lignina de la madera, sustancia que le brinca a la madera su color oscuro y opacidad. Una vez que esta fue removida, se le impregna a la madera con una resina transparente, lo cual nos permite que la luz pase a través de ella. La técnica no fue la misma desde un inicio, sino que se fue perfeccionando por los investigadores, los cuales lograron crear láminas de madera transparente de hasta 1,2 x 1,8 metros. [3][4]
El uso y la producción de la madera transparente comenzó a mediados de la década de 2010, y ha sido utilizada para aplicaciones arquitectónicas y principalmente en diseño de interiores, como paneles de pared, ventanas, puertas, techos y pisos. También podemos ver este material en algunos objetos como los muebles.
La madera transparente introdujo cambios fundamentales en la forma en que se usa la madera en la construcción y el diseño de interiores. Sumado a que es una alternativa más sostenible y estéticamente atractiva al vidrio y otros materiales transparentes como hemos mencionado, la madera transparente también tiene propiedades aislantes y de absorción acústica, lo cual la convierte en un material muy versátil y funcional. [1]
La madera transparente es aplicada en una gran variedad de áreas y disciplinas, como mencionamos, en la arquitectura, el diseño de interiores, fabricación de muebles y objetos decorativos, pero también en la fabricación de instrumentos musicales y en la industria del automotor. Si bien la madera transparente es muy prometedora, también tiene una gran desventaja, que actualmente su producción es costosa y requiere tecnología avanzada y otros trabajos especializados, lo que limita su uso a aplicaciones de alta tecnología y a proyectos de investigación. De igual forma, es posible que en el futuro la producción de madera clara sea más costosa y se pueda utilizar más en la construcción. [1][5]

IMPACTO AMBIENTAL

La madera es un material ecológico que cuenta con infinitas posibilidades respecto su uso, a su vez la madera transparente promete ser más considerada con el medio ambiente, además más resistente y mejor aislante térmico que el vidrio. Científicos del KTH Royal Institute of Technology de Estocolmo aseguran que es un material 100% biodegradable y con residuos generados en su fabricación no nocivos para el medio ambiente. Pero a su vez podemos encontrar distintas desventajas en su elaboración, por ejemplo que tendría un coste elevado debido a la cantidad de productos usados en la fabricación , además de que el uso masivo de resina epoxi , no biodegradable, daría millones de litros de agua consumida e intoxicada.[16]

Definición ciencia

La madera es un material sustentable y contribuye al ahorro energético de las viviendas, es beneficioso y por eso se sigue investigando y desarrollando para nuevos usos. Una evolución de este material es la “madera transparente” la cual se consigue sustituyendo la lignina, que representa el 20-30% de la masa, es una sustancia natural que forma parte de la pared celular de la madera, la cual le da su rigidez y opacidad característica. Se sustituye por una resina epoxi transparente, logrando un material translúcido, aislante y resistente, impidiendo la pérdida de sus propiedades mecánicas.

Procesamiento

El procesamiento de la madera transparente inicia en la selección de un tipo de madera el cual sea adecuado, y la eliminación de todos sus componentes no celulósicos (como la lignina y la hemicelulosa) que oscurecen a la madera y la hacen opaca. A este proceso de eliminación de dichos componentes se lo conoce como “deslignificación”, y se lleva a cabo con productos químicos o enzimas.

Una vez que la madera se haya deslignificado, se le impregna una sustancia transparente, como un polímero o una resina, la cual llena los poros celulares, manteniendo la estructura de la madera. Este proceso se realiza bajo vacío y presión para asegurarse de que la sustancia se distribuya uniformemente y penetre toda la madera. Luego de esto la madera se corta y se pule para tener al fin nuestras láminas delgadas y translúcidas de madera.

Una vez que tenemos el producto terminado, se lo puede emplear de diversas formas, pero al tener propiedades mecánicas similares a la madera natural e incluso mejores, se la puede utilizar hasta para la construcción de obras, pero también para ventanas, puertas y muebles como ya mencionamos. Además, este es un material sostenible y renovable, lo cual lo hace una opción más atractiva para proyectos de construcción que deseen disminuir su impacto ambiental hacia un futuro. [6][7]

Propiedades

Normas

NormaTítulo
D143-14 [8]Standard Test Methods for Small Clear Specimens of Timber
UNE-EN 13556:2004 [9]Madera aserrada y madera en rollo. Nomenclatura de las maderas utilizadas en Europa./Productos estructurales de madera
IRAM 9546 [10]Maderas. Método de ensayo de flexión dinámica para maderas, con densidad aparente mayor de 0,5 g’/cm3.
ASTM D245-22 [11]Standard Practice for Establishing Structural Grades and Related Allowable Properties for Visually Graded Lumber
UNE-EN 14081-2:2019 [12]Estructuras de madera. Madera estructural con sección transversal rectangular clasificada por su resistencia.
UNE-EN 14081-A1:2023 [13]Clasificación mecánica. Requisitos complementarios para los ensayos de tipo.

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
MADERAS SAN BLAS
11 4581 1375
info@maderasanblas.com.ar
https://maderasanblas.com.ar
Placas fenólicas o tableros de distintas medidas y grosoresPinoArgentinaMADERAS SAN BLAS S.R.L
DDIKA
 
11 3020 8005
ddikamaderas@gmail.com
https://www.ddikamaderas.com.ar
Placa fenólicas distintos grosoresPlaca fenolicaArgentinaDDIKA
ATANOR
 
11 3502-3379 (BS AS)
mdimario@albaugh.com.ar
https://albaugh.com.ar/atapi/v1/producto/Soda%20Cáustica  
Botellas, varias cantidadesSoda causticaArgentinaATANOR
ADVANCE COAT
 
 1157714211
advancecoat.arg@gmail.com
https://www.advancecoat.com.ar/resina-epoxi/  
Botellas, varias cantidadesResina EpoxiArgentinaADVANCE COAT

Bibliografía

1. “Formation of Environmentally Friendly Tourist Behaviors in Ecotourism Destinations in China” https://www.mdpi.com/1999-4907/12/4/424
2. “Un científico sueco consigue crear una madera translúcida” https://hospitecnia.com/noticias/cientifico-sueco-consigue-crear-madera-translucida/
3. “Transparent wood for functional and structural applications”
https://royalsocietypublishing.org/doi/10.1098/rsta.2017.0182
4. “Transparent Wood Could Be the Window of the Future” por: Amy Androff y Robert Westover https://www.usda.gov/media/blog/2020/10/01/transparent-wood-could-be-window-future#:~:text=Transparent%20wood%20is%20created%20when,product%20that%20is%20virtually%20transparent
5. “Transparent Wood: Its Properties | Application | Pros and Cons” por: Monalisa Patel https://gharpedia.com/blog/transparent-wood-properties-application-pros-and-cons/
6. “Facile Processing of Transparent Wood Nanocomposites with Structural Color from Plasmonic Nanoparticles” https://pubs.acs.org/doi/10.1021/acs.chemmater.1c00806
7. Transparent Wood” https://www.instructables.com/Transparent-Wood/
8. “D143 – 14” https://tienda.aenor.com/norma-astm-d143-14-087537
9. “UNE-EN 13556:2004” https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0030496
10. “IRAM 9546” https://www.iram.org.ar/
11. Standard Practice for Establishing Structural Grades and Related Allowable Properties for Visually Graded Lumber” https://www.astm.org/d0245-22.html
12. “UNE-EN 14081-2:2019” https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0061596
13. “UNE-EN 14081-2:2019+A1:2023” https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=N0070929
14. “Madera transparente: Bueno, bonito y sostenible” por: Maria Jose Sanz Bohigues https://arquitecturayempresa.es/noticia/madera-transparente-bueno-bonito-y-sostenible#:~:text=La%20madera%20transparente%20se%20consigue,madera%2C%20aportando%20dureza%20y%20resistencia
15. “Madera transparente: como se hace el material que tal vez sustituirá al vidrio”  por: Cristian Vázquez https://www.eldiario.es/consumoclaro/ahorrar_mejor/madera-transparente-material-vez-sustituira-vidrio_1_7294800.html
16. “Arquitectura de los nuevos materiales: Vidrio e innovaciones de la transparencia”  Por: Andrea Nuez Martin https://zaguan.unizar.es/record/101408/files/TAZ-TFG-2020-4892.pdf  
17. “What is transparent Wood” por: Ben Pilkington https://www.azobuild.com/article.aspx?ArticleID=8577
18. “ Madera Transparente: Fabricación, Propiedades y Usos ” https://maderame.com/madera-transparente/
19. https://www.gabarro.com/es/enciclopedia-madera/pino-silvestre
20. https://material-properties.org/es/madera-de-pino-densidad-resistencia-punto-de-fusion-conductividad-termica/
21. https://www.maderea.es/por-que-la-madera-es-un-buen-aislante-acustico/

Bloque de aserrín mineralizado

Síntesis

El bloque de Aserrín mineralizado es un material que ofrece una alternativa a los ladrillo comúnmente utilizado en las obras, este mismo surge de la mezcla de virutas de aserrín previamente mineralizadas (generalmente en base a una solución de silicato de sodio y otra de cloruro de calcio), cemento portland tipo 1 y (en este caso) carbonato de calcio.
El hecho de que el aserrín previamente pasara por la mineralización, genera que pierda todas las cualidades orgánicas, dejándola en estado inerte lo que le da su resistencia, mesclando esto con el cemento y el aditivo mineral se consigue un mortero con el cual se realizan los bloques en la forma deseada, los cuales si bien poseen una alta resistencia son fáciles de cortar, perforar o clavar en ellos.
Actualmente gran parte de los fabricantes de este material, los realizan siguiendo la tecnología ICF (Isulated Concrete Form) en el cual el bloque en si funciona como encofrado para una estructura de hormigón interna monolítica, debido a esto el bloque simplemente debe ser apilado en conjunto sin necesidad de morteros para la unión entre hiladas, permitiendo así una amplia variedad de usos ya sean estructuras portantes o incluso tabiques.

Contexto histórico, social y económico

Si bien la historia nos remarcan tanto al aserrín como al concreto como elementos presentes hace cientos de años, el acto de combinar esto elementos primeramente contrarios y altamente distintos entre sí, se puede estimar en la primera parte del siglo XX en Estados Unidos, debido al alto precio de los combustibles y la disminución de los ingresos impulso la búsqueda de nuevos materiales de alto aislamiento térmico, resistencia y baja combustibilidad, sin embargo consiguió su nombre de bloque de “Arbolit” más o menos por los años 60, cuando se comenzó a normalizar en la URSS.
Si bien el proceso de elaboración puede ser tedioso y largo, eran relativamente pocos los insumos que pide para la producción, en el pasado el máximo de resistencia de hormigón que se podía conseguír era el cemento portland M400 y el principal mineralizador consistía en sulfato de aluminio, a su vez el bloque se le solía incluir cal o arcilla para reducir el aglutinante, lo que derivaba en una reducción de la dureza del bloque final, debido a esto consistía en una masa semiseca la cual no fluía en los moldes y a los cuales se debía comprimir constantemente para obtener bloques macizos uniformes, mientras que hoy en día se mineraliza el aserrín comúnmente con silicato de sodio y cloruro de calcio aparte del sulfato de aluminio, del mismo modo mientras que al inicio se usaban bloques macizos, normalmente de 20cmx30cmx50cm los cuales requerían mortero para unirlos, dificultando de esta forma el hecho de realizar instalaciones de cualquier tipo a través de los mismos, mientras que en general hoy día, el bloque se realiza utilizando la tecnología de bloque ICF, permitiendo así que el bloque funcione como encofrado del hormigón, ahorrándose de este modo tener que utilizar el mortero entre hiladas, mientras que a su vez lo aísla del exterior permitiendo así que sufra menos las aversiones del ambiente, al mismo tiempo que aumenta capacidades como la del aislamiento térmico y acústico por ejemplo, tomando también en cuenta de que el bloque de aserrín ICF es bastante maleable y fácil trabajar sobre el mismo, permitiendo así poder cortarlo en formas deseadas, agujerearlo a necesidad u todo lo que sea necesario realizando todas las conexiones queridas previas al hormigonado interno de la estructura, dando así una mayor comodidad al momento de trabajar el bloque en comparación a las versiones originales.
En otro aspecto el bloque de aserrín fue pensado para aprovechar elementos de descarte de la industria maderera, mientras a su vez evitara el producir residuos tóxicos durante su producción, sin embargo se puede entender que al utilizar mayormente hasta un 80% de descarte de madera, si la producción superara la cantidad de residuo disponible, se requeriría comenzar a producir madera o desforestar específicamente para la producción de los bloques, lo que podría afectar al aspecto ambiental de la zona.

Definición ciencia

El bloque de aserrín mineralizado, se realiza con una de cementicios, residuos de madera de conífera mineralizada normalmente en una solución de silicato de sodio al 5% y cloruro de calcio a los 3% acompañados de aditivos minerales como pueden ser el carbonato de calcio (CaCo³), todos estos elementos una vez mezclados generan una pasta espesa la cual pasa a ponerse en moldes donde reciben presión constante para rellenar de una forma uniforme dicho elemento.

Procesamiento

Para la elaboración del bloque se requiere aserrín de coníferas proveniente de los aserraderos de la industria maderera que ese encuentran por la zona, cemento portland tipo 1 con mezcla de yeso y Clinker, comprado a mayoristas por pallet al igual que los aditivos minerales y el agua aplicada la cual proviene de perforación de pozo propia,

Propiedades

Normas

NormaTítulo
IRAM N°11588Resistencia a la compresión
IRAM N°11595Resistencia impacto duro
IRAM N°11596Resistencia al impacto blando
IRAM N°11585Resistencia cargas verticales
IRAM N°11950Resistencia al fuego
IRAN N° 4044Aislación acústica
IRAN N°1735Permeabilidad o permeancia al vapor

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
Simacon 
Telf: +54-3751-317581
Mail: simconicf@gmail.com
info@simacon.com.ar
www.simacon.com.ar
Pallets de hasta 40 bloques c/uModulo E 18-10 ICFArgentinaSimacon
ISOTEX® Blocco Cassero in Legno Cemento
Telf: +39 0522 9632
Mail: info@blocchiisotex.it
HTTPS://WWW.BLOCCHIISOTEX.COM
 Cantidad Requerida    (Menor a pallet)
Pallets de hasta 35 bloques c/u
Bloques: 
-HD 20
-HD 25/16
-HB 30/16
-HB 44/15-2
-HD III 30/7 con grafito
-HD III 33/10 con grafito
-HD III 38/14 con grafito
-HD III 44/10 con grafito
ItaliaIsotex®

Bibliografía

(1) Ramos Laura. Informe Técnico.
Revisado el 18 de abril de 2023.
 https://drive.google.com/file/d/1Vj9hecBiSCI4Bj1y–o0eR387H91EpOe/view?usp=share_link
(2) Niell Javier, Velázquez Silvia Beatriz, Corso María Eugenia. Prueba Técnica de resistencia al fuego.
Revisado el 19 de abril de 2023.
https://drive.google.com/file/d/1caMYkGTYARLMma15qcUP6erz65sToW_w/view?usp=share_link
(3) Simacon. Guía Técnica.
Revisado el 18 de abril.
https://drive.google.com/file/d/1SuAHVuwnD_BJQef5tyUp1UQ1nqwqwBy1/view?usp=share_link
(4) Isotex: https://drive.google.com/file/d/1mnpqIiUDeiGNQ5uZwsHgd95fwbF5juCU/view?usp=share_link
(5) Composición de bloque original: https://esn-d.techinfus.com/blok-haus/iz-cementa-i-opilok/
(6) Orígenes: https://paulturner-mitchell.com/es/13398-arbolit-istoriya-arbolita-oblast-primeneniya-arbolita.html
(7) Datos generales: https://optolov.ru/es/types-of-potted-plants/chto-takoe-cementno-struzhechnye-stroitelnye-bloki-arbolitovye.html

Aislante de Aerogel

Síntesis

El aerogel tradicional es muy frágil para la aplicación en el “mundo real” ya que, sus partículas apenas están unidas (si se ve en un microscopio) lo que crea esa fragilidad en él. Sin embargo, con el avance de la tecnología, las empresas están creando aerogeles combinados con otros materiales, lo cual realza e intensifica algunas de sus características más importantes, y además, le da otras nuevas propiedades.
La producción de aerogeles a escala industrial sigue siendo limitada y la mayoría de aerogeles a la venta están fabricados a partir de sílice.. Además, los aerogeles híbridos y orgánicos (hechos a partir de biopolímeros como la celulosa) que combinan dos o más componentes distintos, como el alginato y la pectina, no han llegado a introducirse en el mercado de manera significativa.
Formatos típicos de venta en Argentina: Rollos Rollos de 57 in76m- 57 in46m de largo / Pyrogel XTE/Pyrogel XTF/Cryogel Z.

Contexto histórico, social y económico

(10) El primer Aerogel de sílice fue creado por Samuel Stephens Kistler en 1931, como resultado de una apuesta con Charles Learned sobre quién podría reemplazar el líquido dentro de un frasco de mermelada sin causar que la estructura interna se derrumbara. Esta particular creación trajo consigo el descubrimiento de poder generar una estructura reticulada de un polímero en un medio acuoso. Las propiedades novedosas que trajo consigo fueron una baja densidad (3 mg/cm3) de naturaleza altamente porosa, una propagación del sonido inferior a 100 m/s y una conductividad térmica extremadamente baja (0,03 W· m /m 2 · K hasta 0,004 W·m/m 2 ·K), lo que le confiere notables propiedades aislantes. Al inicio de su creación e implementación, la NASA ha introducido al aerogel en la disciplina aeroespacial como aislante para sus trajes espaciales y transbordadores. Con ayuda del auge y crecimiento de la nanotecnología se logró desarrollar una series de aerogeles basados ​​en otras estructuras: óxido de aluminio, estaño, óxidos metálicos, cromo, carbono, nanotubos de carbono, nanodiamantes. La fabricación comercial de aerogel en formato de mantas o placas comenzó alrededor del año 2000. Una manta de aerogel es un compuesto de aerogel de sílice y un refuerzo fibroso que convierte el aerogel quebradizo en un material duradero y flexible. Las propiedades mecánicas y térmicas del producto pueden variar según la elección de las fibras de refuerzo, la matriz de aerogel y los aditivos de opacificación incluidos en el material compuesto. El desarrollo del material aportó significativamente a la innovación en nanotecnología, ya que con este y la creación de nuevos microscopios a grado nanomolecular se logró la utilización de otros compuestos para crear el aerogel pero logrando mantener sus virtudes más sobresalientes. Actualmente se puede utilizar en fachadas de oficinas para mantener un cierto equilibrio térmico, chalecos antibalas, paragolpes ya que amortigua un 89% del impacto que recibe y tuberías aisladas para plantas químicas. Como se mencionó anteriormente el aerogel cuenta con más de un área de implementación y aplicación. Hoy en día se está investigando su uso para el área de la salud. El un aislante aerogel se considera costoso en la construcción con respecto a los demás aislantes, el cual está en un valor de entre 110 a 120 euros el m2 por 10mm de espesor. El material base utilizado en el aerogel se encuentra en abundancia en las piedras, el suelo y la arena. No se logró encontrar utilidad alguna a los derivados que se producen en su fabricación. Al ser el sílice un material presente en gran porcentaje en la naturaleza su explotación se ve reflejada en la baja capacidad que comienza a tener el suelo para contrarrestar los gases de efecto invernadero. Al dia de hoy solamente se encuentra disponible en Argentina mediante un importador. En cambio en Sur America se distribuye directamente mediante una sede de Cabot Brasil Industria e Comercio Ltda. ubicada en Brasil.

Definición ciencia

El aerogel /gel helado/ humo blanco es un gel ligero y poroso, un material coloidal (sistema conformado por dos o más fases, una fluida (líquido o gas), gas, aproximadamente un 97%, y otra fase dispersa que se encuentra en menor proporción de partículas sólidas de aproximadamente un 3%. Es un polímero siete veces más ligero que cualquier otro plástico.Como dice su nombre, está compuesto de nanopartículas de gel y tiene poros llenos de aire, lo cual caracteriza la ligereza de este.

Procesamiento

Para conseguir un aerogel, lo que se tiene que hacer es, teniendo una base de gel ( el ejemplo más usado es el de la gelatina comestible) extraer del gel la sustancia líquida e introducir aire a esas moléculas líquidas, a esto se le llamaría “secado supercrítico”.
El agua se cambia por alcohol y luego el gel se coloca en un recipiente de alta presión llamado “autoclave”, donde al calentarla al punto de alta temperatura y presión, se llamará punto crítico del líquido, transformará ese líquido en semilíquido y semi-gaseoso llamado “fluido supercrítico”. Ahora ya no habría una distinción entre lo líquido y gaseoso, esas moléculas ya no se juntan unas con otras, cuando se despresuriza el recipiente, ese 1% de masa del gel se mantiene intacto solo que donde antes había poros con líquido, ahora hay gas y ahora esa estructura sólida, los nano poros sólidos se llamarían aerogel.

Propiedades

Normas

NormaTítulo
ASTM C1728-22Especificación estándar para aislamiento de aerogel flexible.
ASTM C356-22Método de prueba estándar para la contracción lineal de aislamiento térmico de alta temperatura preformado sujeto a calor de remojo.
 ASTM C411-19Método de prueba estándar para el rendimiento de superficie caliente del aislamiento térmico de alta temperatura.
ASTM C411-19Método de prueba estándar para el rendimiento de superficie caliente del aislamiento térmico de alta temperatura.
ASTM C447-15Práctica Estándar para Estimar la Temperatura Máxima de Uso de Aislantes Térmicos.
ASTM C795-08Especificación estándar para aislamiento térmico para uso en contacto con acero inoxidable austenítico.
ASTM C1101/C1101M-06Métodos de prueba estándar para clasificar la flexibilidad o rigidez del aislamiento de mantas y placas de fibra mineral.
ASTM C1104/C1104M-19Método de prueba estándar para determinar la absorción de vapor de agua del aislamiento de fibra mineral sin revestimiento.
ASTM C1338-19Método de prueba estándar para determinar la resistencia a hongos de materiales aislantes y revestimientos.
ASTM C1763-20Método de prueba estándar para la absorción de agua por inmersión de materiales de aislamiento térmico.
ISO 15665Acústica — Aislamiento acústico para tuberías, válvulas y bridas.
ISO 22482:2021Productos de aislamiento térmico. Manta de aerogel para edificios. Especificación.

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
*Distribuidor Nacional*
(1) Estudio Baratelli
Dirección: 12 de Octubre 53- Piso 4- Oficina 1, Bahía Blanca. Argentina
Teléfono: 0291-4304212
Página web:
contacto@estudiobaratelli.com
-Pyrogel XTE: 
Rollos de 5mm (0.20 pulg) por 1,500 ft2
Rollos de 10 mm(0.40 pulg) por 850 ft2
-Pyrogel XTF:
  – Rollos de 60 in
(1500 mm) de ancho por 155 ft (47 m) de largo
-Cryogel Z:
  – Rollos de 57 in 
(1,450 mm) de ancho por 250 ft (76 m) de largo
  – Rollos de 57 in 
(1,450 mm)de ancho por 150 ft (46 m) de largo
-Pyrogel XTE
-Pyrogel XTF
-Cryogel Z
Estados UnidosAspen Aerogels
(2)General Insulation Company, Inc.
Dirección corporativa:
278 Mystic Ave, Suite 209, Medford, MA, 02155, EE. UU.
Teléfono: (781) 391-2070
Pagina web:
https://www.generalinsulation.com/?lang=es
-Pyrogel XTE: 
Rollos de 5mm (0.20 pulg) por 1,500 ft2
Rollos de 10 mm(0.40 pulg) por 850 ft2
-Pyrogel XTF:
  – Rollos de 60 in
(1500 mm) de ancho por 155 ft (47 m) de largo
-Cryogel Z:
  – Rollos de 57 in 
(1,450 mm) de ancho por 250 ft (76 m) de largo
  – Rollos de 57 in 
(1,450 mm)de ancho por 150 ft (46 m) de largo
-Pyrogel XTF
-Pyrogel HPS
-Pyrogel XTE
-Cryogel Z
Estados UnidosAspen Aerogels
(3)Aspen Aerogels
NORTHBOROUGH, MA — SEDE CENTRAL
30 Forbes Road, Edificio B
Northborough, MA 01532 
EE. UU.
Teléfono: 1-888-481-5058
Teléfono: 1-508-691-1111
Pagina web:
https://www.aerogel.com/
-Rollo de 5 mm (0,2 pulg) de 139m2 (1,500 pies2 )
-Rollos de 10 mm 
(0,4 pulg) de 79m2      
(850 pies2 )
-Pyrogel XTE
-Pyrogel HPS
-Pyrogel XTF
-Cryogel Z
Estados UnidosAspen Aerogels
(4)Cabot Brasil Industria e Comercio Ltda.
Rua do Paraiso 148 – 5 andar
Sao Paulo 04103-000
Brasil
Teléfono: +55 11 2144 6429
Fax: +55 11 3289 8671
Página web:
https://www.cabotcorp.com.br/
-Espesor 2.5 mm
Ancho 75.7 cm
Longitud de 160 m
-Espesor 3.5 mm
Ancho 76.2 cm
Longitud de 120 m
-Espesor 6.0 mm 
Ancho 76.2 cm
Longitud de 85 m
-Espesor 8.0 mm 
Ancho 76.2 cm
Longitud de 110 m
-Thermal Wrap™ TW250
-Thermal Wrap™ TW350
-Thermal Wrap™ TW600
-Thermal Wrap™ TW800
Estados UnidosCabot Corporation

Bibliografía

Baratelli, Estudio. Ingenieria, Proyectos, Servicios – Revisada el 05/05/2023
Obtenida el 10 de Abril de 2023, de
(1) https://estudiobaratelli.com/aerogel.html
Insulation Company, INC  – Revisada el 05/05/2023
Obtenida el 10 de Abril de 2023, de
(2) https://www.generalinsulation.com/products/mechanical-insulation-products/insulation-types/aerogel-commercial-insulation/pyrogel/?lang=es
Aspen Aerogels  – Revisada el 05/05/2023
Obtenida el 10 de Abril de 2023, de
(3)https://www.aerogel.com/contact/
Cabot Corporation  – Revisada el 05/05/2023
Obtenida el 10 de Abril de 2023, de
(4)https://www.cabotcorp.com/company/contact-us#customer-service
Aerogeles, materiales super aislantes térmicos  – Revisada el 05/05/2023
Artículo realizado por Eunate Goiti, Senior Researcher at Tecnalia
Fecha de publicación: 12 de junio del 2020
(5)https://www.caloryfrio.com/ahorro-energia/aislamiento-termico/aerogeles-materiales-superaislantes-termicos.html
Aerogel Technologies  – Revisada el 05/05/2023
Obtenida el 10 de Abril de 2023, de
(6) http://www.aerogeltechnologies.com
Stephen Steiner  – Revisada el 05/05/2023
Fecha de publicación: 20 de enero del 2018
(7) http://www.aerogel.org
NanoHybrids  – Revisada el 05/05/2023
Fecha de publicación: 30 de Abril del 2019
(8) https://cordis.europa.eu/article/id/247398-next-generation-aerogels-offer-industrial-solutions/es
Trevor English  – Revisada el 05/05/2023
Fecha de publicación: 14 de Enerol del 2016
(9) https://interestingengineering.com/science/airloy-the-new-super-material
New World Encyclopedia  – Revisada el 05/05/2023
Aerogel
Obtenida el 18 de Abril de 2023, de
(10)https://www.newworldencyclopedia.org/entry/Aerogel

Rollo de polietileno de alta densidad

Síntesis

Las membranas geo textiles, son producidas con polietileno virgen de alta densidad y material reciclado. La cual están hechas para resistir a los agentes externos químicos, biológicos que forman unas membranas flexibles, resistentes a la degradación por rayos ultravioleta, una impermeabilidad sobre los líquidos, vapores y humedades. Por eso mismo es indispensable en la construcción, evitando la deshidratación temprana del hormigón, mejorando el curado del piso y lo protege.
Generalmente se venden en rollos de diferentes medidas y diferentes espesores.

Contexto histórico, social y económico

Los primeros sintetizados del polietileno fueron, por primera vez en 1898 por el químico alemán Hans von Pechmann que creo por accidente una sustancia viscosa, blanquezca mientras calentaba diazometan.
La segunda vez alrededor de los años 30 cundo la empresa inglesa ICI, donde Reginald Gibson y Eric Fawcett, trabajaban el etileno, un gas muy ligero elaborado a partir del petróleo; que no tuvo la reacción que esperaban y en cambio se produjo un sólido viscoso blanco.
Sus primeras apariciones fueron en el recubrimiento de cables de telecomunicaciones submarinas alrededor de la segunda guerra mundial.
Cuando esta termia el polietileno aparece como un producto comercial como en envases. Sin embargo este polímero era débil y presentaba deformaciones.
Para los años 50 el profesor Karl Ziegler buscó desarrolla un nuevo tipo de catalizador de polímeros de etileno pero en condiciones menos austeras y encontró la manera de obtener polímero a una presión normal. Al mismo tiempo Giulio Natta, descubro la manera de polimerizar otros monómeros para crear plásticos con el catalizador de Phillips. Así que esta investigación dio origen a los catalizadores Ziegler-Natta, (el cual les sirvió para ganar el premio Nobel en 1963) por su aporte científico a la química.
El Nylon 100 y 200 micrones o Film de Polietileno una forma de polietileno de alta densidad. Esta densidad les da una serie de características únicas que los hacen ideales para aplicaciones en la industria, la agricultura, la construcción. Sus usos pueden ser variables, ya que son resistentes a la mayoría de los productos químicos, son ideales para el almacenamiento de productos peligrosos. También son resistentes a los rayos UV, lo que los hace útiles para aplicaciones al aire libre como en la agricultura, que se utilizan para cubrir los cultivos y protegerlos. En la construcción, se utilizan como forros de estanques y depósitos, y también como materiales de impermeabilización y en la industria del embalaje, se utilizan para la fabricación de bolsas y envases, ya que son resistentes y duraderos.
Estos materiales conllevan a una producción excesiva que generan desechos potencialmente contaminantes. En este caso el polietileno, es uno de los productos qué más desechos generados a nivel industrial, por ello es esencial adquirir conciencia y utilizar polietileno recuperado, hecho a partir de diversos materiales de origen plástico, tanto industriales como obtenidos de distintos desechos de los hogares. Este film se genera a través de un proceso de extrusión el cual es un proceso industrial de fundir y moldear el plástico a flujo constante de presión y fuerza, para obtener la forma deseada. Son de productos originalmente plásticos como silo, bolsas, bidones, etc. dando como resultado polietileno de 200 micrones presentado en forma de film altamente resistente e impermeabilizante tanto con el polvo, como con el agua y la humedad. Se comercializa a un precio notable, son bastante económicos, pero su costo final dependerá de la cantidad de material a comprar, de la medida del rollo (mts) y de los micrones. [1-2-3- 4-5-8-9-10]

Definición ciencia

Este aislante está compuesto por polietileno (PE) es el plástico común que generalmente es una mezcla de compuestos orgánicos similares que difieren en el valor de n. Su estructura química es una cadena larga de átomos de carbono, con dos átomos de hidrógeno unidos a cada átomo de carbono. (+CH2-CH2+n)
El polietileno se obtiene a partir del monómero etileno (eteno). Tiene la fórmula C2H4, que consiste en un par de grupos metilenos (CH2) conectadas por un enlace doble. [6]

Procesamiento

El procesamiento de este aislante es elaborado en un 97% Polietileno que es un polímero sintético que se obtiene mediante la polimerización de eteno (también conocido como etileno). Durante este proceso, se calienta y se mezcla el etileno con un catalizador. Luego, el polietileno se somete a un proceso de extrusión para producir los productos finales. Además se le agrega Negro de humo está representado en el 2.5% de la composición. Con la finalidad de garantizar la vida útil de la membranas en condiciones de exposición químicas y ambientales. Y otros aditivos estos se prestan en un 0.5% de composición incluye antioxidantes como estabilizador para evitar la oxidación del material que puede suceder por los procesamientos a los que se expone el producto. Los antioxidantes utilizados son los fenoles (HPA), fosfitos (HPPS) y aminas (HALS).La calidad final de este polietileno dependerá de la calidad de las materias primas utilizadas y del proceso de fabricación. [7][8]

Propiedades

Normas

NormaTítulo
ISO 527-3:2018Plastics – Determination of tensile properties – Test conditions for films and sheets [11-12]
ASTM 
D638-14
Standard Test Method for Tensile Properties of Plastics [11-13]
ASTM
 D1922-15
Standard Test Method for Propagation Tear Resistance of Plastic Film and Thin Sheeting by Pendulum Method [11-14]
ASTM
 D882
Tensile Testing of Thin Plastic Sheeting  [15]  

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
SIXCOM
(+54) 011 4724 4900
comercial@sixcom.com.ar
creditocobranza@sixcom.com.ar
proveedores@sixcom.com.ar
117 (Ex Suipacha) 2678 San Martín, Buenos Aires (CP 1650)
https://sixcom.com.ar/productos/industrias/#genericos
Bobinas film de
polietileno para todo tipo de uso,
coberturas, Negro / Cristal
en 100, 150 y 200 micrones.
Genéricos construcción San Martin Argentina (Buenos Aires)Sixcom
Mayorista-Plast®
Margarita Weild 1369, Lanus Este. Buenos Aires.
11-2899-1164
info@mayoristaplast.com.ar
https://mayoristaplast.com.ar/handmade-vase-yuugen-zmvxw-
Rollos de 100/200/400 MICRONESFILM DE POLIETILENO NEGRO
100/200/400 MICRONES
Lanús (Buenos Aires, Argentina)Terrapol
Tecnolibertador 
Tel: (11) 67413500
tecnolibertador@tecnolibertador.com
Uriburu 1232 Pilar Buenos Aires
Powered by Mercado 
https://www.tecnolibertador.com.ar/
Se vende fraccionado en 7mts de ancho y el largo en múltiplos de 1mts.
 El rollo entero viene de 50mts de largo x 7mts de ancho.
Geo membranas polietilenoPilar, Buenos aires. ArgentinaTecnolibertador

Bibliografía

(1) Polietileno de alta densidad- consultado 19/04/2023
https://es.wikipedia.org/wiki/Polietileno_de_alta_densidad#Producci%C3%B3n
(2) Video de YouTube (Polietileno, obtención y aplicaciones) – Consultado 19/04/2023
https://www.youtube.com/watch?v=i6KtOtJRQsM
(3) Video de YouTube (Expertos en el reciclaje plástico) ) – Consultado 19/04/2023
https://www.youtube.com/watch?v=C9c8V1qaRvE
(4) Universidad de Burgos – Historia del plástico- Consultado 19/04/2023
https://historiamateriales.ubuinvestiga.es/plasticos/
(5) Educación en ingeniería química-  Consultado 19/04/2023
https://www.ssecoconsulting.com/breve-historia-del-polietileno.html
(6) Tecnología de los plásticos – Consultado 19/04/2023
https://tecnologiadelosplasticos.blogspot.com/2012/07/polietileno-pe.html?m=1
(7) Grupo empresarial (GHA) – Consultado 19/04/2023
https://grupogha.com/geomembrana-hdpe-lisa-nominal/
(8) Mayorista-plast ( TERRAPOL) – Consultado 26/04/2023
https://mayoristaplast.com.ar/handmade-vase-yuugen-zmvxw-?gclid=EAIaIQobChMIpefP8NXH_gIVYxTUAR3XWgpyEAAYAyAAEgIvbPD_BwE
(9) Arquimac-  Consultado 26/04/2023
https://www.arquimac.com.ar/comprar-polietileno-200-micrones.php
(10) Anáhuac México- Extrusor de polímeros, ¿qué es y cómo funciona?
https://www.anahuac.mx/mexico/noticias/Extrusor-de-polimeros-que-es-y-como-funciona#:~:text=%C2%BFQu%C3%A9%20es%20el%20proceso%20de,pol%C3%ADmero%20para%20su%20aplicaci%C3%B3n%20final.
(11) Agro-redes (POLCOM) (consultado 26/04/2023)
https://grupo-ap.com.ar/cdeex_firma_iraola/
https://grupo-ap.com.ar/wp-content/uploads/2017/12/polietileno-negro.pdf
(12)  https://www.iso.org/standard/70307.html
(13) https://repositorio.uisek.edu.ec/bitstream/123456789/2628/1/ASTM%20D638-14.pdf
(14) https://www.astm.org/d1922-15r20.html
(15) https://www.instron.com/-/media/literature-library/applications/2006/02/astm-d-882—tensile-testing-of-thin-plastic-sheeting.pdf

Placa de papel 100% reciclado y resina no basada en hidrocarburos

Síntesis

La placa de papel 100% reciclado y resina sin petróleo es un material ecológico y sostenible debido a su fabricación con productos reciclados y carencia de petróleo que ofrece una alternativa a las placas de papel convencionales. Este material está compuesto por papel reciclado y una resina sin petróleo que se utiliza como aglutinante, lo que lo hace más amigable con el medio ambiente y reduce la dependencia de los recursos fósiles.
La fabricación de este material implica la creación de una pulpa de papel a partir de papel reciclado que se mezcla con la resina sin petróleo y se somete a una presión y temperatura adecuadas para crear las placas de papel. Se utiliza en una amplia variedad de aplicaciones, como envases de alimentos, productos de embalaje, paneles de construcción y materiales de papelería. Su uso en la industria alimentaria ha crecido debido a que no contiene productos químicos dañinos para la salud.
Este material también se utiliza en la fabricación de productos para la construcción, como cerramientos, ya que es resistente y fácil de trabajar. Además, las placas de papel son ideales para la producción de tarjetas de visita y folletos, ya que ofrecen una alternativa a los folletos de papel comunes.

Contexto histórico, social y económico

El papel reciclable es una técnica de reciclaje que permite utilizar el papel usado como materia prima para producir nuevos productos de papel. Esta técnica se ha vuelto cada vez más común y eficiente en la producción de papel sostenible, reduciendo la necesidad de talar árboles y la cantidad de residuos generados. Se cree que el reciclaje tuvo su origen en Japón alrededor del año 1031, donde comenzó la primera reutilización de papel desechado de la que se tenga registro. Hoy en día, el papel reciclado es utilizado en la fabricación de una amplia variedad de productos y su versatilidad en cuanto a textura y apariencia lo hace ideal para una amplia gama de aplicaciones.
La placa de papel 100% reciclado con resina sin petróleo es un desarrollo tecnológico que comenzó a hacerse visible en el siglo XX en varios lugares alrededor del mundo en respuesta a la necesidad de alternativas sostenibles para el medio ambiente a los materiales convencionales. No hay un lugar específico donde se haya originado, sino que es el resultado de la colaboración y el trabajo conjunto de empresas e instituciones de investigación en diferentes países. El objetivo era reducir el impacto ambiental de la producción de papel y productos derivados del papel, al mismo tiempo que se promovía la economía circular y la reducción de residuos.
Actualmente las placas son fabricadas por la empresa Paneltech bajo el nombre Paperstone, las mismas tienen diferentes aplicaciones tales como mesadas en cualquier habitación, marcos de ventanas, tablas de cortar, muebles, etc. La producción a gran escala comenzó a fines del siglo XX y ha ido en aumento en el actual siglo. Sin embargo, el uso de este material aún no es tan común como el de los materiales convencionales, y su producción y uso se limita en gran medida a empresas y organizaciones que buscan alternativas para no dañar el medio ambiente.
El uso de la placa de papel 100% reciclado con resina sin petróleo se enmarca dentro de un paradigma socio-tecnológico que valora la sostenibilidad y el cuidado del medio ambiente, se centra en la búsqueda de soluciones innovadoras que puedan satisfacer las necesidades humanas sin comprometer la capacidad del planeta para mantener la vida. Su aparición ha traído varios cambios fundamentales en el ámbito de la producción de materiales y la sostenibilidad ambiental, entre ellos podemos encontrar la reducción del impacto ambiental, el ahorro de recursos, la mejora de la calidad del aire, mayor durabilidad y el estímulo a la economía circular.
Estas placas pueden ser utilizadas tanto en áreas de construcción como en decoración y diseño de muebles, también en fabricación de electrodomésticos, artes gráficas y material de embalaje. En los comienzos del uso del material era costoso debido a que su fabricación estaba ligada a laboratorios, industrias y uso militar, pero en la actualidad es un material que es accesible para su aplicación en obras tanto de empresas y organizaciones como particulares que buscan soluciones más ecológicas.
Al contrario que el papel común, su materia prima, la placa de papel es un material que no abunda en el planeta debido a su reciente comienzo de implementación y su no tan normalizado método de fabricación. Estas placas ya son un material reciclado, pero es posible su reciclaje según sus fabricantes. Los derivados del mismo son diferentes tonalidades y rugosidades del material para la aplicación en la que se esté utilizando. La contaminación que genera el reciclado de papel es mínima ya que es un proceso que se comenzó a utilizar en respuesta a la gran contaminación que genera la fabricación de otros materiales de industria y de papelería. Por el momento no se fabrica en la República Argentina pero el uso de estas placas está creciendo alrededor del mundo.

Definición ciencia

La placa de papel 100% reciclada con resina sin petróleo generalmente está compuesta de papel reciclado y resina sin petróleo, aunque puede variar dependiendo del fabricante y la aplicación específica. El papel utilizado en su fabricación puede ser papel periódico, cartón, papel de oficina u otro tipo de papel reciclado. La resina sin petróleo se utiliza como aglutinante para unir las fibras de papel y proporcionar estabilidad y resistencia a la placa. Las resinas sin petróleo más comúnmente utilizadas son la resina de soja, la resina de almidón y la resina de melamina formaldehído. Debido a que el papel es el factor principal tiene una gran proporción en la mezcla, siendo la resina utilizada para unir las capas en mucha menor medida.

Procesamiento

La elaboración de Paperstone comienza con la selección de papeles y papeles de cartón viejo ya entregados al reciclaje, lo que reduce el impacto ambiental al aprovechar materiales que de otra manera podrían terminar en vertederos. Estos materiales se mezclan con resinas libres de petróleo para generar una pulpa, que es una especie de masa pegajosa pero no adhesiva. A continuación, se colocan en una plancha a una temperatura y presión específicas entre 120 y 180 grados Celsius para darle forma de tabla, lo que resulta en un producto final resistente y duradero.

Propiedades

Normas

NormaTítulo
40 CFR 261 (7)Identificación y listado de residuos peligrosos
40 CFR 370 (8)Informes de sustancias químicas peligrosas
40 CFR 372 (9)Informe de liberación de sustancias químicas tóxicas
NSF/ANSI 51 (3) (10)Certificado de producto para materiales de equipos alimenticios
IRAM 2159 (11)Productos prensados a base de papel y resinas termoestables Láminas y planchas.

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
CDUK Surface Design Solutions
https://cdukltd.co.uk/
Placas de material de 3658mm x 760mm y de 3658mm x 1525mm.
Grosor desde 6mm hasta 19mm y peso desde 24kg a 147kg.
(12)
PaperstoneReino Unido e IrlandaPaperstone
Ice Stone
https://icestoneusa.com/
Placas de material (Tamaño no especificado para público general, solo contactándose con la empresa)
(13)
PaperstoneBrooklyn, Nueva York. Estados UnidosPaperstone
Greenhome Solutions
https://www.ghsproducts.com/
Placas de material (Tamaño no especificado para público general, solo contactándose con la empresa)
(14)
PaperstoneSeattle, Washington. Estados UnidosPaperstone

Bibliografía

(1) (n.d.). Fabrication and Finish Guide.
Obtenida el 18 de abril de 2023, de
https://paperstoneproducts.com/wp-content/uploads/2022/03/PaperStone_Fabrication-Manualaddendum.pdf
(2) (n.d.). Safety Data Sheet.
Obtenida el 18 de abril de 2023, de
https://paperstoneproducts.com/wp-content/uploads/2021/07/Copy-of-PaperStone_MSDSV1.pdf
(3) (n.d). Foodsafe Certification.
Obtenida el 18 de abril de 2023, de
https://paperstoneproducts.com/wp-content/uploads/2021/09/PaperStone_NSF_foodsafe_certification.pdf
(4) (n.d). PaperStone – The Unique Countertop That’s Both Sustainable and Affordable.
Obtenida el 18 de abril de 2023, de
https://www.ghsproducts.com/news/paperstone-recycled-paper-countertops/
(5) (n.d). PAPERSTONE® & AFFORDABILITY.
Obtenida el 18 de abril de 2023, de
https://www.greencountertopsdirect.com/paperstone-and-affordability/
(6) (n.d). Care & Maintenance.
Obtenida el 18 de abril de 2023, de
https://www.ghsproducts.com/PS-CareMaint.pdf
(7) (n.d). PART 261—IDENTIFICATION AND LISTING OF HAZARDOUS WASTE.
Obtenida el 18 de abril de 2023, de
https://www.ecfr.gov/current/title-40/chapter-I/subchapter-I/part-261
(8) (n.d). PART 370 —HAZARDOUS CHEMICAL REPORTING: COMMUNITY RIGHT-TO-KNOW.
Obtenida el 18 de abril de 2023, de
https://www.ecfr.gov/current/title-40/chapter-I/subchapter-J/part-370?toc=1
(9) (n.d.). PART 372—TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW
Obtenida el 18 de abril de 2023, de
https://www.ecfr.gov/on/2023-05-03/title-40/chapter-I/subchapter-J/part-372
(10) (n.d). Kiwa NSF/ANSI 51 product certificate for food equipment materials.
Obtenida el 18 de abril de 2023, de
https://www.kiwa.com/en/service2/certification/nsf-ansi-51-product-certificate-food-equipment-materials/
(11) (n.d). IRAM 2159: Productos prensados a base de papel y resinas termoestables Láminas y planchas.
Obtenida el 9 de junio de 2023, de
https://catalogo.iram.org.ar/#/normas/detalles/2977
12) (n.d). CDUK Surface Design Solutions.
Obtenida el 9 de junio de 2023, de 
https://cdukltd.co.uk/colour-selector/?filter_cat_0=220
(13) (n.d). Ice Stone, Made in the USA.
Obtenida el 9 de junio de 2023, de
https://icestoneusa.com/paperstone/
(14) (n.d). Greenhome Solutions
Obtenida el 9 de Junio de 2023, de
https://www.ghsproducts.com/paperstone-sustainable-composite-surfaces/

Panel acústico de algodón reciclado

Síntesis

Material compuesto por algodón reciclado 85% y 15% PES (polímero de unión). El 85% del algodón proviene de reciclados posconsumo tales como productos finales que ya cumplieron su propósito y fueron desechados por los usuarios.
Su método de fabricación es industrializado a partir de un proceso de selección de las fibras y luego pasa por una serie de etapas hasta llegar a su estado final en forma. Mayormente se lo suele encontrar en forma de rollos, placas o bandas.
Su propósito principal es el de la aislación acústica, aunque también proporciona otras ventajas como ignífugas, elevada resistencia a tracción, prestaciones térmicas y una larga duración (aprox 100 años).
Producto únicamente comercializado en Europa.

Contexto histórico, social y económico

Según la Naciones Unidas, la industria textil es la segunda más contaminante del planeta, después de la industria del petróleo. Ésta, produce el 10% de las emisiones de dióxido de carbono en el mundo (C02) y el 20% de las aguas residuales. Además, es el segundo generador de residuos de plásticos, sólo antecedida por la industria del packaging.
Al año, se fabrican en el mundo 150.000 millones de prendas de ropa, lo que equivale a 62 millones de toneladas. En Europa se calcula que son desechados entre 10 y 14 kg de ropa por persona anualmente, lo que genera un residuo de 9 millones de toneladas de ropa usada, siendo el 90% de estos residuos desechados en vertederos, y el 10% restante, se utiliza para la reventa o el reciclaje a través de productos de limpieza industrial o como insumo para la fabricación de aislantes utilizados en el sector de la construcción.
Bajo este contexto, la Comisión Europea estableció en el año 2018 la necesidad de garantizar la utilización prudente de los recursos naturales a través de acciones de economía circular, con miras a preservar la calidad del medio ambiente y proteger la salud humana. Para ello, los países europeos debieron tomar medidas para prevenir la generación de residuos, a través de la promoción y apoyo a modelos sustentables de producción y consumo, así como el fomento al diseño, la fabricación y el uso de productos eficientes en términos medioambientales.
Con este impulso, los estados miembros deben fomentar la reutilización de productos y la creación de sistemas que promuevan las actividades de reparación y reutilización, incluyendo, entre otros, los residuos textiles como materiales disponibles para el mercado de la construcción. Para lograr este objetivo, se establecieron una serie de medidas, como por ejemplo, una recolección selectiva para el textil, al igual que el tratamiento del papel, metal, plástico y vidrio
Actualmente, existe cierta inercia respecto al uso de aislantes convencionales, motivada en parte, por el desconocimiento sobre la existencia de otras soluciones más respetuosas con el medioambiente. En los últimos años, a nivel internacional se han buscado soluciones para la obtención de productos que cumplan las especificaciones técnicas, y que, además, ayuden a mejorar la sustentabilidad del planeta, sin incrementar significativamente el costo de la solución constructiva. A raíz de estas innovaciones, se presentan algunas soluciones proporcionadas por diferentes compañías que cuentan con productos de aislamiento fabricado partir de textil reciclado.
(1)(3)

Definición ciencia

Desde el año 1944 la empresa reconocida a nivel mundial GeoPannel se ha dedicado a la REGENERACION DE FIBRAS TEXTILES y su posterior uso como materia prima del algodón reciclado. Esto quiere decir que desde el siglo XX ya se comenzó a darle un segundo uso a las prendas que eran desechadas y utilizadas para la construcción.

Procesamiento

El proceso de producción de estos materiales se basa en la recuperación de tejidos textiles, que pueden provenir, tanto de productos textiles pre-consumo, como post-consumoº. En una primera fase, se recolectan y se seleccionan los residuos textiles. Algunas empresas solo seleccionan un tipo de material, por ejemplo, tejido de algodón (mezclilla), poliéster, también hay empresas que trabajan con multimaterial. Después de la selección, se realiza un proceso de trituración mecánico y de producción de la fibra. Luego, se le añaden aditivos fungicidas y retardantes del fuego. Posteriormente, se le da la forma de placa o manto compactando al material, añadiendo aglutinantes en algunos casos. Este proceso se puede realizar mediante las técnicas habituales de producción de napas, como el sistema de no tejido punzonado o el termo fijado. En el caso de que el material se presente en forma de producto a granel, no se realiza esta operación.
º Entiéndase por materiales de pre-consumo (o post industrial), aquel desecho proveniente de un proceso industrial como, por ejemplo: cenizas volantes y desulfoyeso, escoria siderúrgica, virutas de madera, etc. Por material post-consumo, aquel desecho generado por el consumidor o bien usuarios finales comerciales e industriales y que no puede ser utilizado para su propósito original.

Propiedades

Normas

NormaTítulo
UNE-EN 823:2013Productos aislantes térmicos para aplicaciones en la edificación. Determinación del espesor.
UNE-EN 1602:2013Productos aislantes térmicos para aplicaciones en la edificación. Determinación de la densidad aparente.
UNE-EN 12667:2002Materiales de construcción. Determinación de la resistencia térmica por el método de la placa caliente guardada y el método del medidor de flujo de calor. Productos de alta y media resistencia térmica.
UNE-EN 1608:2013Productos aislantes térmicos para aplicaciones en la edificación. Determinación de la resistencia a tracción paralela a las caras.
UNE-EN 12086:2013Productos aislantes térmicos para aplicaciones en la edificación. Determinación de las propiedades de transmisión del vapor de agua.
UNE-EN 13501-1:
2019
Clasificación en función del comportamiento frente al fuego de los productos de construcción y elementos para la edificación. Parte 1: Clasificación a partir de datos obtenidos en ensayos de reacción al fuego.

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
Bonded Logic Inc.
{Estados Unidos} www.bondedlogic.com
Rollo de 40 cm x 240 cmUltraTouch™ Denim InsulationEstados UnidosBonded Logic Inc
VRK {Vernooy, Relais y Kici}
{Francia y Países Bajos}
vrk-isolatie.nl
Placa 20mm de 60cm x 120cm
Placa 40mm de 60cm x 120cm
Rollo 20mm de 120cm x 1400cm
Métisse® InsulationFrancia Paises BajosVRK
Manifattura Maiano
{Italia} isolanti.maiano.it
Placa 20mm de 60cm x 120cm
Placa 40mm de 60cm x 120cm
RecyclethermItaliaMaiano
Recuperación de Materiales Textiles
S.A. {España} rmt-nita.es
Granel Placa RolloRMT-Nita® COTTONEspañaRMT-Nita® COTTON
Ángel Ruiz Ibáñez S.A.
{España} www.geopannel.com
Placa, rollo y bandas de diferentes tamaños y tipos.GEOPANNEL PYL 2.0EspañaGeopannel

Bibliografía

(1) Boletín Economía Circular: “Aislantes de construcción a partir de textil reciclado” {Chile}
(2) geopannel.com
{Información general sobre sus productos, especificaciones, testeos, costos, etc ya que son los primeros productores}
(3) https://www.cottonworks.com/es/temas/sustentabilidad/sustentabilidad-algodon/algodon-reciclado
{página web fundada para noticias relacionadas con el uso del algodón y la sustentabilidad}
(4) https://www.residuosprofesional.com/residuos-textiles-paneles-aislantes
{Información sobre el contexto}
(5) www.bondedlogic.com
{Información sobre sus productos, especificaciones y testeos}
(6) www.une.org
{Asociación Española de Nacionalización}

Arandela de fijación

Síntesis

Contexto histórico, social y económico

El origen o descubrimiento de las arandelas es un tanto incierto. Ninguna ciencia sabe cómo se originó la necesidad de obtener una arandela para facilitar la creación de uniones empernadas o atornilladas, pero se cree que la invención de nuestro material de estudio viene de hace muchos siglos atrás A.C, en la edad de piedra, el hombre neolítico al crear herramientas, armas o construcciones, hizo uso de algún tipo de arandela. Son infinitas las posibilidades en las que se puede utilizar una arandela para obtener un buen resultado en un objeto.
La arandela como herramienta se creó muchos años atrás, por la necesidad del hombre a la hora de unir dos elementos y que queden totalmente fijos, por el mismo motivo, su nacimiento es incierto. El surgimiento de la fabricación en masa de las arandelas de acero se ubica en la revolución industrial (1760-1840), donde el acero como material tomó suma importancia.
El propósito de la misma siempre fue el mismo, hacer que no se aflojen ni que se pierdan fuerzas o líquidos entre dos unidades atadas. Lo que sí fue surgiendo es la distinción de los materiales, ya que existen de acero, plástico, caucho, entre otros, y cada una se utiliza en los ámbitos más convenientes. Además, se utiliza en variadas áreas y disciplinas, debido a que ajusta tornillos que pueden encontrarse en cualquier tipo de trabajo, herramientas y obras. Quizás no somos conscientes, pero se encuentra en muchas partes, se encuentra en nuestras vidas debido a que en las áreas más comunes en las que se lo puede visualizar son:
– En las maquinarias: ya sea para todo tipo de maquinaria de vehículos, agrícola y tecnología, etc.
– Muebles: Sillas, mesas, escritorios.
– Obras.
Y se la puede aplicar y visualizar en muchas más situaciones u objetos con tornillos, tuercas, etc.
En cuanto al costo, se debe tener en cuenta que hasta llegar a la arandela, hay un proceso, en el cual se debe evaluar la extracción del hierro y carbono, su aleación, el transporte y las infraestructuras que conlleva. A pesar de eso, es una herramienta muy barata y fácil de conseguir, cuenta con muchos tipos y cada una con sus respectivas características. Las más comunes son las planas que se la puede conseguir de diferentes dimensiones, las cuñas 8% y 14%, Grower, también conocidas como arandelas de seguridad elásticas helicoidales, cónicas y entre otras muchas más.
Impacto Ambiental: El impacto ambiental que las arandelas generan es un tanto bajo, dependiendo de su material. Si nos basamos en las de acero, estas no afectan mucho al cambio climático debido a que el material tiende a ser duradero, resiste y se pueden reciclar, pero lo que sí afecta de manera negativa es su producción ya que esta requiere de un proceso que demanda mucha energía, estamos hablando de un 24% del total de las emisiones industriales. Es un material totalmente abundante en la tierra debido a su gran cantidad de oportunidades de uso, pero lo bueno es que es 100% reciclable, por lo cual, muchas industrias logran reutilizar el acero chatarra logran obtener un -56% menos de energía.

Definición ciencia

El acero es una aleación, lo que quiere decir que es una combinación de materiales. Comúnmente se trata de la fusión de hierro y carbono, pero se puede mezclar con otros materiales y así, crear distintos tipos de acero. Dependiendo con qué materiales se lo fusione, va a poseer distintas características, por ejemplo, la aleación con carbono hace que el acero sea más resistente a la tracción.

Procesamiento

Desde la extracción de las materias primas al producto terminado: Para crearlo se necesita de la producción de las materias primas. Primero calentar el carbón hecho polvo en un entorno sin oxígeno para crear coque, un combustible con abundante carbono. Luego de dejar enfriar el coque, se lo calienta en el alto horno, con piedra caliza y el mineral del hierro para general el hierro fundido, la piedra caliza elimina las impurezas y se convierte en desecho. Por último, eliminar las impurezas del hierro fundido para obtener el acero.
Hay dos formas de producir el acero: con el alto horno, donde se utiliza mineral de hierro fundido como material principal y el coque como agente regulador; o con el horno de arco eléctrico, donde el acero reciclado se utiliza como material inicial, y al ser más pequeño el horno, no se necesita del coque como agente reductor, debido a que utilizan la electricidad para fundir el mineral del hierro y producen menos CO2.

Propiedades

Normas

NormaTítulo
ASTM F436Aplica para arandelas planas de acero endurecido y revenido
DIN 434Aplica sobre las arandelas cuñas disponiendo un ángulo de 8%
DIN 435Aplica sobre las arandelas cuñas disponiendo un ángulo de 14%
DIN 433Aplica sobre las arandelas para tornillos de cabeza redonda
DIN 7980Aplica sobre las arandelas Grower para las situaciones de vibración
DIN 9021Aplica sobre las arandelas planas anchas.
Iram 5107Aplica para arandelas planas chapistas

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
Bulonera BAF 
Tel: 4582-0333
Wsp: 15-5609-3797

http://www.bulonesytornillos.com.ar/arandelas.htm
Arandelas cuñas, dentado interior, cuadrada madera, de neoprene, F 436, plana estándar, grower, biseladas, platillo DIN 2093, DIN 7989 y estrella exteriorBulonera BAF S.R.LArgentina, Bs.As. Villa CrespoIndustria Nacional.
La bulonera virtual
Tel: 011-5365-8329
Wsp: 11-3183-4554

https://labuloneravirtual.com.ar 
Arandelas Biseladas, Chapista, Grower y Plana Entre 20mm a 52mm

De hierro zincado
La Bulonera VirtualArgentina, Consulta Virtual.Industria nacional.
Würth Argentina S.A.
Tel: (11) 5263 7053
Wsp: (11) 3424-4052

https://www.wurth.com.ar/es/contenidos/la-empresa/wurth-en-argentina.html 
Arandelas Biseladas, Dentada de seguridad, Grower, Plana, estrella, de Cobre, de aluminio, de fibra

De chapa y goma.
Würth Argentina S.A.Argentina, Bs. As. Villa Lynch.Würth Group
PlasmaGal 
Tel: +34 664 21 25 95
https://www.plasmagal.com/
Arandelas elasticas, de ajuste, onduladas, de cobre y de ala ancha.
 
Acero pulido y zincado.
PlasmaGalEspaña, Lugo.PlasmaGal
Nord-Lock Group 
Tel: + 56 954 382 616
Email: sales.cl@nord-lock.com
Arandelas de bloqueo de cuña, de la serie X y para construcciones de acero.
 
Acero inoxidable y 254SMO
Nord-Lock GroupEspaña, Portugal, América  LatinaNord-Lock

Bibliografía

https://humanidades.com/acero/
https://www.totalmateria.com/page.aspx?ID=propiedadesdelacero&LN=ES
https://blog.laminasyaceros.com/blog/propiedades-mec%C3%A1nicas-del-acero
https://todoparalaindustria.com/blog/tipos-de-arandelas/
https://www.nord-lock.com/es-es/insights/knowledge/2022/history-of-the-washer/
https://www.gestiondecompras.com/es/productos/componentes-mecanicos-y-de-ferreteria/arandelas/
http://www.bulonesytornillos.com.ar/arandelas.htm
https://labuloneravirtual.com.ar
https://www.plasmagal.com/ 
sales.cl@nord-lock.com
https://www.wurth.com.ar/es/tienda/normalizado-fijaciones/arandelas/
https://www.gestiondecompras.com/wp-content/uploads/2021/11/arandelas-es.pdf

Malla de acero cuadrada recubierta en PVC

Síntesis

Este material está compuesto por alambre de acero y recubierto en PVC (policloruro de vinilo). La fabricación de la malla de acero comienza con un proceso denominado trefilado, que consiste en modificar la estructura interna del acero permitiendo el incremento de su límite elástico y mayor resistencia a la tracción, este proceso es llevado a cabo en trefiladoras que se encargan de desenrollar el alambrón, lo decapan, lubrican y laminan. Luego se une por soldadura los alambres longitudinales y transversales que conforman el panel lo cual es realizado en máquinas electrosoldaduras, que sueldan y retiran el panel fabricado a una mesa de rodillos provista de volteador. Por último, el alambre de acero es pasado a una extrusora para el revestimiento de PVC. La malla de acero revestida en PVC se puede utilizar para la protección de puertas y ventanas o para la delimitación de áreas ya sea en la industria o en zonas residenciales. También se puede emplear como barandilla del pasillo.

Contexto histórico, social y económico

El uso de la malla fue empleado principalmente en el inicio de la arquitectura italiana (1860). Antiguamente, se utilizaba para construir la retícula de las bóvedas ya que se oponía a la tendencia rotatoria que caracteriza a las cúpulas. La retícula cuadrada de la malla se presentó anteriormente de la retícula triangular debido a que esta última se formó creando una subdivisión de estos cuadrados con piezas oblicuas. El proceso mediante el cual se unen los alambres transversales y longitudinales para crear la malla se denomina electrosoldadura, que comienza su historia cuando, en 1801, Sr Humphry Davy comenzó sus experimentos al producir una descarga en miniatura de un rayo, para posteriormente lograr crear un arco entre dos terminales de un circuito. Luego, en 1860, Wilde unió por primera vez de forma intencional, dos metales por medio de la electricidad, patentando en 1865 la primera Soldadura Eléctrica oficial. Esto conlleva a que, a partir de 1880, surjan como un boom las investigaciones sobre la soldadura con arco eléctrico, creándose la primera en 1885 por N. V. Benardos, siendo montada en dos tableros con los dos extremos unidos bajo un arco eléctrico procedente de un electrodo, mismos que calentaban los extremos, empujando las piezas mediante cabezales hasta unirlas. Este es el modelo de origen de los que conocemos actualmente. Mas tarde, las innovaciones en el campo de los electrodos se trasladan a EE.UU., donde en 1912 Strohmenger y su socio Slaughter patentan el primer electrodo grueso para usos industriales, conocido actualmente como Strohmenger-Slaughter System. Durante los años siguientes, la soldadura eléctrica empieza a buscar nuevas técnicas de protección gaseosa, pero la irrupción de la soldadura por arco abre una nueva vía. Estos procesos de soldadura no son precisamente económicos a nivel industrial, sus costos están denominados por una determinada cantidad de variables con respecto a la operación.
En las empresas metalmecánicas este proceso es uno de los más usados y uno de los mas importantes en cuanto se tenga en cuenta a la elaboración de piezas, especialmente las que son sometidas a una alta exigencia de carga pesada. La electrosoldadura es un proceso muy utilizado actualmente debido a que genera precisión mejorando el armado, tiene menos defectos que cualquier otro método y crea mayor seguridad al trabajador ya que este no necesita estar cerca de las maquinas. Los componentes principales del acero se encuentran en abundancia en la naturaleza. Este se puede reciclar de manera ilimitada sin perder atributos, que provoca un incremento de su producción a gran escala.
La gran producción de acero mediante altos hornos en los países occidentales resulta perjudicial; sus costos y problemas ambientales son un incentivo para que las políticas en emisiones de CO2 debiliten la preeminencia de los altos hornos. La mayoría de los impactos provocan contaminación global y local.
En cuanto al PVC, provoca riesgos para la salud durante toda su producción, uso y eliminación. Es un elemento no reciclable ya que cuando se quema, forma ácido clorhídrico y sustancias toxicas provocando daños ambientales y mala salud.
No es un detalle menor resaltar que en Francia se lleva a cabo el reciclaje de botellas de PVC con mucho éxito, haciendo que esta tarea pase de ser completamente imposible, a reconsiderarle.4

Definición ciencia

La malla de acero revestida en PVC está compuesta por el alambre de acero. Este mismo acero es una aleación de hierro con una pequeña cantidad de carbono. Gracias al hierro, se conserva sus propiedades metálicas, y la adición de carbono, mejora su resistencia.
El PVC surge de la polimerización del monómero de cloroetileno. Sus componentes derivan del cloruro de sodio, del gas natural, e incluyen cloro, hidrógeno y carbono

Procesamiento

La producción del alambre de acero comienza con la acería, dónde mediante hierro y otros elementos se obtiene la base que servirá para producir el acero fundido. Luego de la fundición, se vierte encima de un molde mediante agua, se enfría y forma una cubierta exterior (costra), que es sacada por la acción de rodillos, enfriada y enderezada, para luego cortarse a cualquier medida. El paso siguiente es la reducción del espesor. Después sigue la laminación en frío. Se obtiene el diámetro final del alambrón: materia prima del alambre. Luego, el alambrón pasa por la depuración, que elimina los óxidos e impurezas de la superficie. Por último, en el trefilado, el alambrón pasa a ser alambre. Para obtener diámetros muy delgados, es sometido a otros procesos como el recocido. El PVC es un policloruro de vinilo, nacido por polimerización del cloruro de vinilo derivado de la halogenación del etileno. Esto ocurre en un reactor donde se coloca el cloruro de vinilo y un peróxido que, al elevarse la temperatura se descompone, generando radicales libres que inician la reacción. Dependiendo de la temperatura, se puede generar un polímero con cadenas largas o cortas. Una vez obtenido ese polímero, se lo procesa para obtener diferentes compuestos. Mediante la extrusión se le brindan al PVC diferentes características. La fabricación de la malla comienza con el trefilado, luego se unen los alambres transversales y longitudinales mediante la soldadura y, por último, el alambre es pasado por una extrusora para ser revestido de PVC.

Propiedades

Normas

NormaTítulo
10113:25:00Acero para el refuerzo del hormigón. Acero de refuerzo soldable.’
ISO/TR
9769:1991
Acero y hierro: Revisión de los métodos de análisis disponibles
IRAM-IAS U
500-0601
Soldadura por arco – Electrodos de acero al carbono, revestidos
UNE-EN
10218-2
Alambres y productos trefilados de acero. Parte 2: Medidas y tolerancias de los alambres.
UNE-EN
10223-8
Alambres de acero para cerramientos y mallas. Parte 8: Gaviones de malla electrosoldada.
UNE-EN ISO
16120-2
Alambrón de acero para la fabricación de alambre. Parte 2: Requisitos específicos del alambrón de uso general.

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
Grupo AgroRedes Polcom, ventas@agroredes.com.ar, (011) 3220-3099Rollo sellado: 1.20mx25m de
10x10mm o 25x25mm
Malla cuadrada con PVC
ArgentinaPolcom
Fabrimac,
info@mallasfabrimac.com (054)45-4315 | (054)45-
1989 2
Rollo sellado. Alambre con PVC: BWG 20 y 19Malla
cuadrada
plastificada en
PVC verde
PerúFabrimac
Mallas Julio Torres,
ventas@mallasjuliotorres.co
m, (301) 677 7975 25
RolloMalla cuadrada recubierta en PVCColombiaMallas Julio Torres
IcoMallas S.A, dircomercioexterior@icomallas.com, (+57) (2) 442 4865Rollo. 1/4″ calibre 21 y 2″, 4″, 1″ de calibre 16Malla galvanizada electrosoldada recubierta en
PVC
ColombiaIcoMallas

Bibliografía

http://www.mallasomnia.com/procesos-de-fabricacion/
http://agroredes.com.ar/cerramientos/malla-cuadrada-con-pvc/
http://corinsa-srl.com/productos/gaviones-con-pvc/
https://books.google.com.ar/books?id=CW57aeubAkAC&pg=PA98&lpg=PA98&dq=malla+cuadrada+meta
lica+origen&source=bl&ots=K-zOzHVHBF&sig=7sYZ7KQ5yLzCPsGpr8aSh1cgb-Y&hl=es&sa=X&ved=0ahUKEwjau-yYgraAhUME5AKHTO4B7AQ6AEldjAN#v=onepage&q=malla%20cuadrada%20metalica%20origen&f=fals e
https://www.bfmx.com/la-soldadura-y-su-desarrollo/
https://blog.kriptonoil.com/la-invencion-de-la-soldadura-electrica/
https://es.scribd.com/document/302988906/Costos-de-Soldadura
https://www.koike.com/documents/ES-Product-Brochures/Cutting/AUTOMATION PGA SP WEB.pdf
http://www.plastico.com/temas/PVC,-Cuales-son-sus-efectos-en-el-medioambiente-y-la-salud-
humana+3027117
http://www.lareserva.com/home/pvc
http://www.ecologiaverde.com/por-que-el-pvc-es-toxico-y-contaminante-494.html
https://definicion.de/pvc/
http://www.conecband.com/entrada/806/proceso-de-fabricacion-del-alambre-de-acero-inoxidable/
https://www.alacero.org/es/page/el-acero/que-es-el-acero
https://ar.answers.yahoo.com/question/index?gid=20070521125329AAIB80q
http://bibing.us.es/proyectos/abreproy/20510/fichero/PFC+Marta+Donaire+Bajo.pdf
https://www.iso.org/standard/17630.html
http://www.siderurgia.org.ar/normas.php?numero1=500-06&yotit1=AND&titulo1=&pag=0&campo1=numero&orden1=ASC&enviar
http://www.vaxasoftware.com/doc edu/fis/densidades.pdf
http://www.aginter.com.ar/telas mallas.php
https://www.hortomallas.com/proceso-oxidacion-del-metal-ambientes-humedos/
https://www.imporinox.com/acero-inoxidable/mantenimiento-del-acero-inoxidable
https://books.google.com.ar/books?id=MQ4NAQAAIAAJ&pg=PA77&lpg=PA77&dq=deflexion+maxima+m allas&source=bl&ots=8zdmAD7PF1&sig=eKZsc4G3Az8G5wpqAGSQMrpYS4c&hl=es&sa=X&ved=0ahUKEwit6-6Y9JzbAhUCIpAKHV3pCrUQ6AEIXZAJ#v=onepage&q=deflexion%20maxima%20mallas&f=false
https://www.sciencedirect.com/science/article/pii/S140577431630035X
https://www.idrd.gov.co/especificaciones/index.php?option=com_content&view=article&id=2243&Itemi
d=1799
http://hyperphysics.phy-astr.gsu.edu/hbasees/Tables/thrcn.html
http://www.valvias.com/prontuario-propiedades-materiales-calor-especifico.php
http://www.fisicanet.com.ar/fisica/termodinamica/tb03 conductividad.php
https://docs.google.com/document/d/1Yexw9wvAyqxYzzz6-0R7EBpilQ6VhphAkUMQzt1P3jw/edit
https://agroredes.com.ar/cerramientos/malla-cuadrada-con-pvc/
http://agroredes.com.ar/cerramientos/malla-cuadrada-con-pvc/
http://www.mallasfabrimac.com/mcgpp.php
http://www.mallasjuliotorres.com/web/empresa cerramiento perimetral/
http://www.icomallas.com/productos/mallas-electro-pvc