Archivos de la categoría Aislación Térmica

Vidrio de baja emisividad (LOW-E)

Síntesis

Vidrio, creado a fines del siglo XX, recubierto con múltiples capas en forma de lámina de metales y otros compuestos químicos, las cuales generan una elevada transmitancia térmica a la reflexión de los rayos incisivos del sol (rayos infrarrojos), mejorando también la visibilidad a través del vidrio.
El vidrio low-E es un buen aislante térmico en comparación al vidrio común y al vidrio reflexivo tradicional. En su aplicación, se suelen utilizar como vidrio interior en las unidades de DVH (doble vidrio hermético). Un DVH con low-E puede conservar un 66% de la energía perdida por un vidriado simple. Su comercialización está dada, en general, por hojas de 244×330 cm y los espesores posibles son de 4, 5 y 6 mm. Se utiliza mayormente en edificaciones cuyas fachadas requieren de mucha luminosidad como edificios con oficinas o centros comerciales.

Contexto histórico, social y económico

La creación de este material fue impulsado debido a la crisis energética generada en la década de 1970. Los primeros pioneros del mismo fueron Pilkington (empresa japonesa del frupo Nippon Sheet Glass Co., Ltd) y la firma alemana Flachglas Gruppe, utilizando capas delgadas de oro. Esto generaba una pigmentación de color verde, lo que más adelante la empresa alemana Interpane solucionaría impulsando el primer recubrimiento de baja emisividad (low-E) incoloro con la aplicación de capas de plata en el año 1981. (1)
Por motivos de la crisis energética en esa época se buscó la manera de poder reducir dichos consumos tan perjudiciales. Se llegó al hallazgo de que debía haber una solución para reducir la perdida de calor y a la vez poder conservarlo por un tiempo mas prolongado. El vidrio, si bien era un material fundamental en los edificios para la permisividad de la entrada de luz solar hacia los ambientes y oficinas, era uno de los elementos que menor propiedad de conservación de calor había. Esto llevo a realizar la creación de un material que mejore esta cuestión, sin perder los beneficios principales del vidrio en sí. Surgió así el vidrio low-E, un vidrio que bajo la aplicación de capas de distintos componentes por medio de un proceso pirolítico mejoró favorablemente el consumo energético en la época.
Una vez creado el material, DOE junto con LBNL y Suntek Research Associate fueron los que decidieron realizar la primera comercialización del vidrio low-E para las ventanas de la nación de EE.UU. Según DOE, en 1988 el 20% de las ventanas vendidas en los Estados Unidos tenían recubrimiento de baja emisividad.
En la actualidad el vidrio low-E es el más empleado en los EE.UU, Japón y la mayor parte de Europa, aplicado como componente del DVH, superando la aislación de un DVH tradicional compuesto de hasta tres vidrios y dos cámaras de aire. Hoy en día estos vidrios están compuestos por más de una capa plateada que reflejan la luz ultravioleta y permiten la trasmisión de la luz visible. Además, en épocas invernales el sistema funciona a la inversa, ya que mantiene el calor interno del edificio. Podemos decir entonces que su aplicación puede ser tanto en climas cálidos como en climas fríos, dependiendo el uso varía la colocación optima del mismo. Si hablamos para un DVH, en los climas cálidos se combina el vidrio low-E (en el interior de la obra) y un vidrio de control solar (en el exterior). En cambio, para los climas fríos utiliza el low-e con un vidrio incoloro. (2)
Reducción de consumo de energía del ambiente (eficiencia energética), ya que evita la fuga del calor y frio provenientes de los distintos sistemas de calefacción.
Evita la transmisión de calor por radiación, por lo que controla el ingreso de los rayos infrarrojos y UV emitidos por el sol. Reduce el uso de consumo energético producido por calefacciones o aire acondicionados.
Durante su fabricación, la fundición y el flotado del vidrio tienen un alto consumo energético, además se precisa una energía adicional para poder incorporar las capas características del vidrio low-e. De este último consumo adicional, el proceso pirolítico requiere de un 28% más de energía por metro cuadrado que el proceso magnetrónico. (3)

Definición ciencia

Su composición está definida mediante la mezcla de arena de sílice, cal y sosa vertidos en moldes. También se le añade dolomita y arcilla de aluminio para su refinado. Los materiales se fusionan en hornos a altas temperaturas (1500 C y para el refinado 1300 C) (1). Luego se le agregan capas químicas microscópicamente delgadas apiladas entre sí de plata y materiales dieléctricos (cerámicos) por medio del método pirolítico o magnetrónico (2)

Procesamiento

El vidrio low-e se confecciona mediante la creación de un vidrio común, el cual se recubre con películas de distintos materiales (capas microscópicas de plata y materiales dieléctricos), que contribuyen significativamente en las propiedades de rendimiento térmico y visual. Dependiendo el uso que se le aplique se colocan más o menos capas, esto variara, según las capas de plata: el porcentaje de paso de emisividad producida por los rayos infrarrojos y ultravioleta; mientras que las capas dieléctricas protegen las de plata y permiten el paso de la luz visible. Estas películas se aplican a través de un proceso pirolítico o magnetrónico.
El proceso pirolítico: durante el proceso de flotación se aplican las capas a alta temperatura sobre la superficie del vidrio.
Proceso Magnetrónico: Se aplican las capas fuera de flotación, y se los somete a una cámara de vacío, coating prácticamente invisible. (1)

Propiedades

Normas

NORMATÍTULO
EN 410/673 (1)Factor U europeo (W / m2 k)
EN 1096-2 (2)Vidrio para la edificación: Requisitos y métodos de ensayo clase A, B y S
ISO 15099 (3)Rendimiento Térmico
NFRC 100-2002 (4)Condiciones ambientales para cálculos
ASTM C1376 (5)Especificación estándar, requisitos ópticos y estéticos para recubrimientos aplicados en método pirolítico o magnetrónico

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
MARCELO TRENTO SRL
(0341) 4570929
http://www.marcelotrento.com.ar/
2440×3300 mm
e: 6 mm
Low-EARGENTINA
Rosario,
Provincia de
Santa Fé
VASA S.A
Brocanelli S.A
+54 9 351 156337183
http://www.brocanellisa.com.ar/
2440×3300 mm
e: 6 mm
Low-EARGENTINA
Cordoba
VASA S.A
Shenzhen Jimy Glass Co., Ltd2140×3300/2250×3300/
2140×1650/2440x1650mm
Low-ECHINA,
Shenzhen
JIMY GLASS
Nippon Sheet Glass Co., Ltd.2440×3300 mmPILKINGTON
Energy advantage®
CHILE
Stgo. de Chile
PILKINGTON

Bibliografía

 CULTURA TECTONICA Contexto histórico, social y económico
 (1) (2) Del sumidero de energía a la eficiencia energética: un recorrido por las tecnologías de ventana 1980: revestimientos de baja emisividad
1https://www.architectmagazine.com/technology/from-energy-sink-to-energy-efficient-a-walk-through-window-technologies_o
 (3)Caracterización y evaluación energética de los vidrios de fachada, pag 32
2https://upcommons.upc.edu/bitstream/handle/2117/103218/AldoVentura_TFM.pdf
 CIENCIA DE LOS MATERIALES- Definición
3http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen3/ciencia3/137/html/sec_4.html
 ¿Cómo y con qué se hace el vidrio?
4http://www.ivanvidrios.com.ar/low.htm
 Propiedades y características – Físico – química / Mecánica
 (1) (2) Propiedades generales del vidrio.
5http://www.vidrieriaespanola.com.ar/arq/Propiedades-generales-del-vidrio.php#:~:text=2500%20Kg%2Fm3%2C%20es%20la,por%20cada%20milimetro%20de%20espesor.
 Térmica, Óptica y Protección solar
 (3)(4)(5)(6) Catálogo de especificaciones técnicas: Low-e 4th Surface Commercial Technology Pilkington Energy Advantage™ Low-e pag 99 extraído de:
6https://www.pilkington.com/es-cl/cl/products/por-beneficio/aislacion-termico/pilkington-low-e#catlogos
 Normalización nacional y/o internacional para aplicaciones en construcción
 (1)(2)(3)(4)(5) Catálogo: Low-e 4th Surface Commercial Technology Pilkington Energy Advantage™ Low-e págs 96 al 101 extraído de:
7https://www.pilkington.com/es-cl/cl/products/por-beneficio/aislacion-termico/pilkington-low-e#catlogos

Teja de Vidrio Fotovoltaica (SolTech Energy)

Síntesis

Este tipo de teja de vidrio fotovoltaica está hecha de vidrio templado, para ser más exactos por aproximadamente 70% en peso de SiO2, el resto es principalmente Na2O y CaO. Su método de fabricación comienza por un proceso de fusión, se produce una masa y se homogeneiza, luego se lleva a un horno (1600º), pasa al conformado de la pieza proceso que también tiene el nombre de Flotado, termina en el recocido, se enfría al aire libre y se corta, luego se introduce a otro horno con un molde para que este obtenga la forma de la teja.

Contexto histórico, social y económico

SolTech Energy es una empresa sueca nacida en Estocolmo, donde el investigador Peter Kjaerboe y el biólogo Arne Moberg llevaron a cabo un sistema que absorbe luz solar, luego de años de desarrollo, en 2006 se constituyó la empresa con el objetivo de poner esta solución a disposición de público en general. Con un sistema único de tejas de vidrio transparentes, donde no solo se trata de la imagen sino también en que es sostenible y simple que permite el ahorro en la factura eléctrica y la reducción de la huella ecológica.

Este sistema de energía SolTech debuta en la feria comercial nominado como “el material nuevo más popular” galardonada con una medalla de oro, Nordbygg 2010 en Estocolmo, aunque en sus investigaciones iniciales la compañía había colaborado con la fábrica de vidrios Orrefors (Este sistema de energía SolTech debuta en la feria comercial nominado como “el material nuevo más popular” galardonada con una medalla de oro, Nordbygg 2010 en Estocolmo, aunque en sus investigaciones iniciales la compañía había colaborado con la fábrica de vidrios Orrefors (Suecia) hoy en día se producen de forma industrial en Portugal, sin cambiar su diseño. A partir de investigaciones desde como capturar de una manera eficiente los rayos solares y transformarlos en calor (sistema SolTech Sigma) hasta su sostenibilidad ya que utiliza energías renovables y limpias, con el objetivo de aprovechar esta energía para que el sistema use el aire caliente que circula para calefaccionar y calentar el agua casi todo el año, y reducir así los costos de energía. Su propósito no cambia, su principal preocupación siempre pasa por el promover nuevas tecnologías que reduzcan tanto costos, como el impacto que genera su proceso de producción, teniendo en cuenta que la vida material del vidrio es mayor a la de la arcilla y el hormigón y más fácil de producir y reciclar, y a la vez generar nuevas formas de aprovechar nuestros recursos, de la mano de su objetivo viene también en donde se aplican, generalmente lo visualizamos en el área de una arquitectura ecológica, puede ser desde cubrir o dar sombra en espacios abiertos (protección), hasta la captación solar en espacios cerrados. Si bien no hay una facha exacta de comienzo de producción, si sabemos que en 2012 ya existían estos sistemas en la ciudad de Andalucía, España, ciudad elegida por la empresa sueca para desarrollar modelos para el clima mediterráneo, donde la Agencia Andaluza de la energía financió parte de su instalación, consiguiendo un resultado de mas de 20 viviendas donde las necesidades de agua caliente estaban cubiertas un 80% y la calefacción un 45% en planta baja y 100% en planta alta. La aparición de este sistema no tubo grandes problemas en su producción ya que contaban con las herramientas necesarias no solo para producirlo sino también para realizar pruebas que corroboren sus resultados. y en cuanto al ámbito social podemos decir que encontrar nuevas y respetuosas formas de salvar el medio ambiente se ha convertido en el objetivo de mas de uno.

Definición ciencia

La teja de vidrio fotovoltaica es un material que conlleva un gran gasto energético a la hora de su producción, ya que el vidrio que se utiliza se compone por aproximadamente 70% en peso de SiO2 (Oxido de Silicio), el resto es principalmente Na2O (Oxido de sodio) y CaO (Oxido de Calcio). (b*)

Procesamiento

El proceso de fabricación comienza por la extracción de materias primas, la arena como principal componente, sulfato de sodio, piedra caliza y cristal reciclado (y así ahorrar el gasto de las otras materias primas). Primero el proceso de fusión, donde estos ingredientes se funden (entre 1.500 y 2.000 ºC) creando así una masa homogénea. Luego el vidrio flota sobre el estaño a 1.000 ºC, en este depósito se va enfriando y solidificando. En este punto el vidrio tiene la suficiente consistencia para desplazarse por los rodillos donde se vuelve a calentar sin llegar a fundirlo, se deja enfriar lentamente y con un diamante se corta el cristal a medida, la forma de la teja aparece cuando el vidrio es puesto en otro horno con un molde mediante aumente la temperatura esta se deformará adquiriendo la forma de la pieza. (b*)

Propiedades

Físico-química:

Densidad seca: 2,60 Kg/m3 ASTM C1048

Resistencia ambiental:

ABCDEFG
La resistencia ambiental se clasifica como: buena (verde), regular (amarillo) mala (rojo).
Se aplica a cada uno de los parámetros (A: fuego / B: ácido / C: solventes orgánicos / D: agua / E:
ambiente salino / F: rayos UV / G: biodegradable).

Normas

NormaTítulo
IRAM
210017
Energía solar. Módulos fotovoltaicos. Etiquetado de eficiencia energética.
ASTM
c1048
Especificación estándar para vidrio totalmente templado. Resistente al calor
IRAM
210001-1
Energía solar. Colectores solares
IRAM
12843
Vidrio plano para construcción. Vidrio Templado. Métodos de ensayo
IRAM
011604
Aislamiento térmico de edificios. Verificación de sus condiciones Higrotérmicas. Ahorro de energía en calefacción. Coeficiente volumétrico g de pérdidas de calor.

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
ON.NETWORKING
11 5199-1494
www.on-networking.com
Formato: m2 Unidades por pack:9Tejas solares fotovoltaicasArgentinaON.NETWORKING
Nuoran
0086-13676278946 Nuoran.en.alibaba.com
Formato: por unidad Embalaje: 6 unids/ caja;180pcs/ palet;3600 PCS /20 contenidoEco-friendlyGuangdong, ChinaNuoran
SolteQ Sudáfrica
+44 (0) 800689 4194
http://www.solteq.co.za/
Formato: m2Tejas fotovoltaicasCiudad del Cabo, SudáfricaSolteQ
Vidres MASCARELL/ 937.552.525/ www.cmascarell.es50cm × 22cm × 3mmTeula EficentCataluña, EspañaTeula Eficent

Bibliografía

1https://www.arquitecturayempresa.es/noticia/soltech-tejas-de-vidrio-para-producir-energia-solar-fotovoltaica-en-cubierta
Arquitectura Sostenible/Rosa Remón Royo
2https://inhabitat.com/heat-your-home-with-soltech-energys-beautiful-glass-roof-tiles/ (1*) Las hermosas tejas de vidrio de SolTech calientan su hogar con energía solar/Yuka Yoneda
3https://www.youtube.com/watch?time_continue=1&v=uJyktR8mqh0&feature=emb_title (1*)
HDL: Andalucía, banco de pruebas para el desarrollo de tejas solares que generan energía limpia/
Andreas Telander (Dir. De SolTech Energy Mediterráneo)
4https://www.youtube.com/watch?v=tw-GWyQS1rM&feature=youtu.be(b*)
5Clase 5: Materiales plásticos y vidrios/Materiales IA UNSAM
..\..\..\Downloads\FichaTecnica15-VidrioTemplado (3).pdf(2*)
Ficha técnica Vidrio Templado
6http://bus.euroglas.net/sites/bus.euroglas.net/files/descargas/fichaTEMPLADO3.pdf (3*)
Ficha técnica cristal templado/EuroGlas
7https://www.saint-gobain-sekurit.com/es/glosario/propiedades-del-vidrio (4*)
Propiedades del Vidrio/Saint-Gobain.
8https://www.solteq.eu/SolteQ-Catalog-Solarroofs.pdf
SolteQ Energy Concepts
9https://www.youtube.com/watch?v=r1PmJ3Xt_Kk
SolTech on KBS/SolTechEnergy
10https://catalogo.iram.org.ar/#/normas/detalles/12577
IRAM 210017
11https://www.astm.org/DATABASE.CART/HISTORICAL/C1048-12.htm
ASTM c1048
12https://procesosconstructivos.files.wordpress.com/2013/08/iram_11604.pdf
IRAM 011604
13https://www.santafe.gob.ar/ms/academia/wp-content/uploads/sites/27/2019/08/Energia_Solar_Termica_OES_digital_2.pdf
IRAM 210001-1
14file:///C:/Users/Usuario/Downloads/Manual%20del%20Vidrio%20Plano.pdf
IRAM 12843

Polietileno de alta densidad

Síntesis

El polietileno de alta densidad (PEAD) ,es un polímero termoplástico conformado por unidades repetitivas de etileno. Dicho etileno proviene de la industria petroquímica a través de la ruptura de hidrocarburos de refinería . La fabricación del Polietileno de alta densidad se puede dar por diferentes métodos. Previamente a su transformación, se adicionan aditivos, esto recibe el nombre de formulación. Dentro de los métodos de transformación se encuentran el de Extrusión, Inyección, Soplado, Rotomoldeo, Termoformado, y Compresión . Este material se encuentra disponible en casi todo el mundo , siendo este uno de los elementos más utilizados en las obras debido a sus propiedades . Este material tiene varias aplicaciones : caños para la protección de Cables para telecomunicaciones , Tuberías para el transporte de fluidos, gas natural, contenedores de calor geotérmico. para instalaciones eléctricas el diámetro comercial varía entre 2” y 8” , para instalaciones de drenaje y otras redes que transporten líquidos el rango es de 100”1200”, este rango , incrementa de a 50”.

Contexto histórico, social y económico

El polietileno fue sintetizado por primera vez por el químico alemán Hans von Pechmann quien por accidente lo creó en 1898 mientras calentaba diazometano. Luego de investigar y descubrir nuevas formas de polimerizar el etileno, se creó el Catalizador Ziegler-Natta, llamado así por sus creadores, donde el etileno es polimerizado a bajas presiones, formándose así el polietileno de alta densidad(PEAD)(1). Dicho elemento se caracteriza por tener sus cadenas atómicas de forma lineal , esto genera una muy buena resistencia al impacto, a sustancias químicas y abrasivas(3), es muy ligero, etc.. A diferencia de su homólogo(8)de baja densidad (PEBD) , que posee ramificaciones en sus cadenas atómicas , generando así una pobre resistencia mecánica , baja resistencia al calor , es más flexible y demás . este producto está destinado a bolsas, botellas , films para embalajes , etc. -En 1953, el profesor alemán Karl Ziegler encontró un camino completamente nuevo para la obtención del polietileno a presión normal. Cuando se inyecta etileno en una suspensión de cetilato de aluminio y éster titánico en un aceite, se polimeriza el etileno con desprendimiento de calor y forma un producto macromolecular. De esta manera se pueden unir en una macromolécula más de 100.000 monómeros (frente a los 2.000 monómeros en el método de la alta presión). El polietileno de alta densidad fue en principio desarrollado para empaquetar como film antes de utilizarse como botella de leche en 1964. Debido a las ventajas que tiene por sus propiedades tanto en precio como en resistencia química y mecánica frente a otros productos, su uso ha crecido enormemente en muchas aplicaciones. Actualmente sus aplicaciones varían desde tubos para instalaciones eléctricas hasta conductos para la agricultura y / o alcantarillado, donde en este último los líquidos pueden ser desde agua hasta sustancias químicas. en 1961 se pone en marcha la primera planta de producción comercial de HDPE en Brindisi (Italia), con el nuevo catalizador de bajo rendimiento de Ziegler-Natta y el proceso “slurry” propiedad de Montedison. así mismo El 7 de Febrero de 1963 se produjo polietileno por primera vez en la Argentina. La producción de elementos de este material , comenzó a aumentar a partir de la década del 70. Disponiéndose de varias formas y así mismo pertenece a un amplio abanico de rubros . En el caso de la construcción , se lo aplica para alcantarillado , drenaje e instalaciones eléctricas , para dichas aplicaciones existe una variedad de medidas que corresponden con la solicitud requerida , además de ello las tuberías pueden aparecer en formato corrugado(13) para instalaciones eléctricas ya que por el diseño de su superficie puede soportar cargas sin deformarse y en formato liso(13) comúnmente utilizado para transporte de fluidos (8). -El polietileno es un material derivado del petróleo, además, es uno de los plásticos más comunes debido a su bajo precio y simplicidad en su fabricación, lo que genera una producción de aproximadamente 80 millones de toneladas anuales en todo el mundo. Es un material difícilmente biodegradable, la naturaleza tarda aproximadamente 150 años en descomponerse. Dicho material puede ser reciclado, identificando a este polímero con el N°2, esto fue creado con el fin ayudar a las empresas de reciclado a separar los diferentes tipos de plástico para su reprocesamiento. Para su reciclaje(9)(10) en primer lugar se debe separar y seleccionar los elementos por tipo de fabricación (inyección, extrusión, etc.) y se debe retirar todo aquello que se considere un contaminante del material. Los métodos que se emplean para reciclar son: mecánico -es un sistema de triturado y no destructivo.;térmico- Es un método destructivo que consiste en la combustión del plástico, con el objeto de obtener energía. ; relleno sanitario- este sistema se define como un lugar legalmente autorizado donde la basura municipal se deposita y clasifica para su posterior entierro. tiene un límite de reciclaje de 4 a 5 veces. Por lo general para incrementar la vida útil del producto, se le agrega un pequeño porcentaje de material virgen, para mantener sus propiedades.

Definición ciencia

El polietileno es un polímero de la familia de los polímeros olefínicos (como el polipropileno), Es un polímero termoplástico conformado por unidades repetitivas de etileno. Es un material parcialmente cristalino, designación que proviene del hecho de existir en su estructura cadenas largas y perfectamente alineadas cuya densidad es más elevada (zonas cristalinas) y cadenas altamente desordenadas con densidades parciales más bajas (zonas amorfas). fórmula es(-CH2-CH2-)n , es químicamente el polímero más simple e inerte. Las cadenas moleculares del HDPE presentan escasas ramificaciones, que se traduce en una mayor fuerza específica del material.

Procesamiento

El polietileno se sintetiza por medio de un procedimiento, llamado polimerización de Ziegler-Natta(2). Se trata de un proceso de polimerización catalítica (catalizador de Ziegler-Natta) a baja presión (la presión de fabricación del HDPE está por debajo de 14 MPa).

Propiedades

Normas

NORMATÍTULO
ASTM F667 / F667M – 16Especificación estándar para tuberías y accesorios de polietileno corrugado de 3 a 24 pulgadas. Estándar activo.
UNE-EN ISO 1183-1:2019(Materia prima) Métodos para determinar la densidad de plásticos no celulares. Parte 1: Método de inmersión, método del picnómetro líquido y método de valoración. (ISO 1183-1:2019, Versión corregida 2019-05)
(ISO 527-1:2012). UNE-EN ISO 527-1:2012Plásticos. Determinación de las propiedades en tracción. Parte 1: Principios generales.
UNE-EN 61386-1:2008Sistemas de tubos para la conducción de cables. Parte 1: Requisitos generales.

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
Tuboloc S.A.
Tel:(011) 4878-5888 (011)4749-4613 tuboloc@tuboloc.com
Rollo/tubo 20mm a 2000 mmTehmco PeccArgentinaTuboloc
Plastimet San Luis S.A. Tel:(+54 11) 4668-1762 www.plastimet.com.arRollo Grosor: 25mm Longitud:30 mtsAir Vac NArgentinaPlastimet
Tigre-ADS Argentina Tel: (+54 911) 44042338
www.tigre-ads.com/argentina
Rollo/tubo a partir de 75mm a 1500 mm de diametro..Drenpro one .Sanipro .Denpro infra .Denpro HDBrasilTigre. ADS
Poliflex tel:(228) 8163555 Ext. 111 www.poliflex.mxRollo diametro ½”x 100m diametro ¾”x 50m diametro 1”x 50mrojo residencialMéxicoPoliflex

Bibliografía

1http://rexiplast.com.ar/polietileno-alta-densidad/
2https://es.wikipedia.org/wiki/Catalizador_Ziegler-Natta
3Tabla de resistencia quimica para polietileno de alta densidad(PEAD).
http://www.ferrando.net/SPANISH/TABLA%20AGENTES%20QUIMICOS%202016.pdf
4http://www.goodfellow.com/S/Polietileno-Alta-Densidad.html
5https://instalacioneselctricasresidenciales.blogspot.com/2012/10/4-etapas-para-instalar-tubo-conduit-de.html
6https://instalacioneselctricasresidenciales.blogspot.com/2012/10/4-etapas-de-la-instalacion-de-tubo.html
7http://www.tigre-ads.com/argentina/es
8DiferenciasPEAD-PEBD:
https://www.repsol.com/es/productos-y-servicios/quimica/productos/polietileno/index.cshtml
9tesis de polietileno de alta densidad (Universidad de San Carlos de Guatemala): http://biblioteca.usac.edu.gt/tesis/08/08_0639_Q.pdf
10propuestas de reciclado del polietileno de alta densidad :
http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-54212015000100003
11Normas astm : www.astm.org
12Normas une iso : www.aenor.com
13comparacion tuberia de (HDPE) lisa con tuberia de (HDPE) corrugada:
https://www.geosai.com/productos/tuberia-de-polietileno/

Perfiles autoportante de vidrio (Profilit ®)

Síntesis

El sistema de perfiles autoportantes de vidrio Profilit es una innovadora y económica alternativa a las técnicas convencionales de cerramiento con vidrio. El perfil de vidrio Profilit se fabrica con vidrio incoloro común recocido. Su faz externa es texturada mientras que su faz interna es lisa. Profilit se suministra en tiras estándar de 3000 y 5500 mm de largo en su tipo normal, 262 mm de ancho exterior, 41 mm de ala y 6 mm de espesor. La configuración en forma de “U” del vidrio Profilit aumenta notablemente su resistencia a los esfuerzos laterales permitiendo su instalación empleando elementos de gran longitud sin estructuras intermedias.

Contexto histórico, social y económico

Existen restos de vidrio que datan de unos 5.000 años a.C. Las primeras piezas hechas íntegramente de vidrio datan del 2.100 a.C., en las que se empleaba la técnica del moldeado. Hacia el año 200 a.C., los egipcios comenzaron a utilizar la caña del vidriero para soplar el vidrio. Más adelante, los romanos perfeccionaron la técnica empleando óxidos metálicos como colorantes, e impulsaron su uso para la conservación y almacenaje de determinados productos. En la Edad Media, el vidrio se convirtió en objeto de lujo para la decoración y destacó su uso como envase. En la Revolución Industrial S XIX, año 1800 el empleo del carbón para calentar los hornos y la introducción de las primeras máquinas de automatización de la producción, hizo posible el aumento de la producción haciendo más barata la fabricación. A comienzos del siglo XX se convirtió en una industria de masas, por medio de la instalación de hornos de fuego continuo y de los progresos realizados en el campo de la automatización de la producción. La evolución tecnológica de vidrio continúa hoy. Uno de los puntos fuertes del vidrio, que lo ha hecho uno de los materiales más empleados a lo largo de la historia es su reciclabilidad. Y es que el vidrio se recicla al 100% infinitas veces, manteniendo exactamente las mismas propiedades originales. El reciclaje de envases de vidrio tiene grandes beneficios ambientales, ya que evita la extracción de materias primas de la naturaleza, así como la emisión de CO2. Desde que se descubrió que la combinación de calor, sosa (carbonato sódico), cal y arena se formaba un material duro y transparente, el vidrio experimentó un proceso constante de desarrollo tecnológico. A partir del siglo XV el vidrio se empleó sobre todo para cubrir ventanas y demás aberturas. En las catedrales góticas representaba la luz divina y las escenas bíblicas representadas en los vidrios de colores instruían mediante imágenes a la gente analfabeta. Las ventanas de los siglos XV y XVI, realizadas con particiones, reflejan el desarrollo tecnológico del material ya que en esa época el vidrio se producía en tamaños pequeños. En el siglo XVIII los avances tecnológicos lograron que el vidrio se hiciera más transparente y de mayor tamaño. Las ventanas de guillotina reflejan estos avances y el creciente gusto por los interiores luminosos. En el siglo XIX y a través de los edificios comerciales, el vidrio alcanza un nuevo virtuosismo arquitectónico. Hasta la revolución industrial el tamaño de las ventanas y otras aberturas estaba restringido ya que las estructuras descansaban sobre muros de carga. Con la aparición de las estructuras enmarcadas, de hierro colado y luego en acero la utilización del vidrio en la construcción aumentó en forma espectacular. Estos avances estructurales coincidieron con una mejora en la calidad del vidrio. Algunas obras de Mies van der Rohe o Walter Gropius emplearon el vidrio redefiniendo la relación de los edificios con su entorno. En 1959 se produce un nuevo adelanto cuando Pilkington inventa el vidrio flotante, la fabricación de vidrio plano mediante el proceso Float consiste en una lámina de vidrio en estado de fusión que flota a lo largo de una superficie de estaño líquido.

Definición ciencia

La apariencia visual del sistema de perfiles Profilit provee líneas limpias e ininterrumpidas a una fachada, ya que la resistencia mecánica del perfil de vidrio elimina la necesidad de emplear una carpintería convencional para construir cerramientos de grandes dimensiones. Internamente ofrece una superficie vidriada, sin obstrucciones, sutilmente translúcida, que permite el máximo ingreso de luz natural difusa sin producir sombras. En aplicaciones donde los cerramientos son susceptibles de impacto humano, se puede utilizar el Profilit Templado. Los perfiles Profilit® K25 se pueden templar en longitudes de hasta de 3000 mm. Una vez templado, el perfil tiene mayor resistencia, admitiendo mayores alturas de instalación (en función de la carga de viento incidente), en caso de rotura, se rompe en pequeños fragmentos sin filo. El Sistema Profilit posee pocos componentes que pueden ser adaptados a cualquier diseño y edificio donde se desea privacidad visual, buena iluminación natural y un bajo costo de obra y de mantenimiento, una solución arquitectónica de vidriado basada en la resistencia estructural del perfil de vidrio en forma de U.

Procesamiento

La fabricación de vidrio plano mediante el proceso Float consiste en una lámina de vidrio en estado de fusión que flota a lo largo de una superficie de estaño líquido. En el baño “Float” la masa vítrea permanece confinada en un medio cuya atmósfera es químicamente controlada, a una temperatura lo suficientemente alta y durante un tiempo lo suficientemente prolongado para eliminar irregularidades y nivelar sus superficies hasta tornarlas planas, paralelas y brillantes, pulidas a fuego. Debido a que la superficie del estaño es plana, la del cristal así obtenido también lo es. La lámina es enfriada lentamente mientras sigue flotando sobre el estaño, hasta que con sus superficies lo suficientemente endurecidas, emerge del mismo y continua avanzando sobre rodillos, sin que éstos afecten su cara inferior.

Propiedades

Físico-química:

Resistencia ambiental:

ABCDEFG
La resistencia ambiental se clasifica como: buena (verde), regular (amarillo) mala (rojo).
Se aplica a cada uno de los parámetros (A: fuego / B: ácido / C: solventes orgánicos / D: agua / E:
ambiente salino / F: rayos UV / G: biodegradable).

Normas

NORMATÍTULO
CEProducto se ha fabricado de conformidad con las normas europeas para productos de vidrio.
IRAM 12595Vidrio plano de seguridad para la construcción. Práctica recomendada de seguridad para áreas vidriadas susceptibles de impacto humano. Información de la norma
IRAM 12843Vidrio plano para la construcción. Vidrio templado. Requisitos y métodos de ensayo. Información de la norma ICS:81.040.20 Vidrio en la construcción Organismo de estudio: Vidrio Plano para la Construcción Información de la publicación Norma Número de edición: 1 Fecha Publicación: 20/06/2008 Estado: Vigente.
NORMA ISO 9001-2000Horno de fusión y una línea de producción certificada
ISO 140-3Los valores de Reducción acústica de Pilkington Profilit TM están testados según la Normativa.

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
VASA https://www.vasa.com.ar Distribuye a todo el paísMedidas: 262mmx46mmx3000mm; 262mmx46mmx5000mm Espesor: 6mm Peso aprox. 5 Kg/ml.
Colores: Verde y azul
Profilit ®ArgentinaVASA TECHNOLOGY
VIIO
www.viio.com.ar
Distintos puntos de venta en Capital y gran buenos aires, córdoba y Santa fe
Medidas:
262mmx46mmx3000mm; 262mmx46mmx5000mm Espesor: 6mm Peso aprox. 5 Kg/ml.
Colores: Verde y azul.
Profilit ®ArgentinaVASA TECHNOLOGY
Casa Calello http://casacalello.com.ar Av. La Plata 2197 –
Quilmes Oeste
4250.0586
info@casacalello.com.ar casacalello@sinectis.com.ar
Profilit® se fabrica en dos anchos: K25 con 262 mm de ancho. K37 con 382 mm de ancho.
La altura del ala es de 41mm y un espesor de 6 mm, La altura del perfil es de 3 y 5 m
Profilit ®ArgentinaVASA TECHNOLOGY
GLASSIC® marca registrada de Templados Argentinos S.A https://www.e- glassic.com/profilit/
Grupo SICAVI SRL Luis María Drago 6241 | Munro | 1605 | Bs. As.
Tel. 011 4762 2757 Whatsapp 011 2284 8891 Email: info@sicavi.com.ar
Se suministra en tiras con una longitud estándar de 5000 mm y 3000 mm Las dimensiones son: 262 mm de ancho exterior, 41 mm de ala y 6 mm de espesor.Profilit ®ArgentinaVASA TECHNOLOGY

Bibliografía

1Luz y Arquitectura:
https://www.vasa.com.ar/wp-content/uploads/2016/06/profilit-u.pdf
2Glassic: Sistema Profilit
https://www.e-glassic.com/profilit/
3VIIO: Sistema de cerramiento autoportante
https://www.viio.com.ar/notes/profilit-sistema-de-cerramiento-autoportante/
4Vidrios Vitrolit: Profilit ventajas y aplicaciones
https://vitrolit.com/version_anterior/vitrolit-u-glass.html
5Vasa: Profilit
https://www.vasa.com.ar/product/cool-lite-knt/
6Todo aberturas: Sistemas vidriados
http://www.todoaberturas.com/profesionales/vidrios_sistemas_vidriados.php
7Uglass srl: Recomendaciones de instalación vitrolit
http://www.uglass.com.co/instalacion-en-divisiones-y-fachadas.html
8Vasa vidriería Argentina: Boletín informativo BI30 pág. n°25 _ 04/07/2006
https://www.vasa.com.ar/wp-
9content/uploads/2016/06/profilitautoparte.pdf
10Vasa. Profilit descripción
https://www.vasa.com.ar/product/226/
11Vidrios Castelar. Perfiles autoportantes
http://www.vidrioscastelarsa.com.ar/profilit.html
12Link Video Youtube
https://youtu.be/fZICZlWHo9s?list=PLGwBJmIY8JcFXHAhw8U8JQ-4_DnooDaf1
13Sistema Profilit
https://www.e-glassic.com/profilit/
14Perfil “U” de vidrio Profilit
http://www.brocanellisa.com.ar/PDF/08-PROFILIT.pdf
15Guía productos de arquitectura
https://www.lirquen.cl/site/archivos/Catalogo-Lirquen.pdf