Archivos de la categoría Aislación Acústica

Mortero fotocatalitico

Síntesis

Se aplica en zonas de aire contaminado y en edificios y áreas sensibles a la salud de las personas. El cemento proviene de materias primas de origen natural: piedra caliza y arcilla. Las excavaciones son cercanas a las plantas de cemento, y allí se someten a un tratamiento de trituración preventivo para reducir su tamaño y facilitar su transporte a los centros de producción. El primer paso de procesamiento consiste en moler y secar, hasta obtener un polvo muy fino. Sigue el cocinado, en hornos donde se alcanza una temperatura de 1450 ° C, obteniendo el clínker cuyos componentes dan la actividad hidráulica al cemento. La fase final del proceso de producción consiste en la molienda del clínker con yeso y cualquier componente secundario, en este caso un acelerador de los procesos de oxidación ya existentes en la naturaleza, que promueve una descomposición más rápida de contaminantes y evita su acumulación y adhesión en la superficie, llamdo TX Active®.

Contexto histórico, social y económico

Hoy en día el recubrimiento externo de las edificaciones, sobre todo las destinadas a viviendas, es el de acabados de cemento, hormigón o mortero. En los últimos años se avanzó mucho en lo que respecta a materiales multifuncionales por lo que se han propuesto nuevas funcionalidades para estos, aparte de las ya requeridas con objetivos estructurales y de aislamiento. Luigi Cassar y colaboradores, presentaron por primera vez en el año 1999, en Italia, la propuesta para patentar su novedoso producto con fotocatalizadores, finalmente patentado en junio de 2002. Pero, fue empleado por primera vez en 1996, a modo experimental, para estructuras prefabricadas que forman parte de las tres “velas” de la iglesia Dives in Misericordia de Roma, proyecto del arquitecto Richard Meier. Posteriormente, las investigación y desarrollo sobre estos cementos fueron incesantes por más de diez años. En un principio, junto a su equipo de fabricantes de cemento, Italcementi SpA (Bérgamo, Italia), el químico Luigi Cassar y el ingeniero Carmine Pepe, habían desarrollado lo que habría sido su primera indagación en la fotocatalización:“Aglutinantes hidráulicos y composiciones de cemento que contienen partículas de fotocatalizador “.Esta invención proporciona un aglutinante hidráulico, premezclas secas y composiciones de cemento que tienen la propiedad mejorada de mantener una cantidad inalterada, brillante y colorante durante un período de tiempo más largo. Estas composiciones contienen, a granel, partículas de un fotocatalizador capaz de oxidar sustancias contaminantes en el medio ambiente en presencia de luz, oxígeno y agua. (Patente n°6409821)Posteriormente, avanzando sobre sus investigaciones, en 2002 y 2003, lograron dos nuevas solicitudes de patentamiento, la primera se refiere a una mezcla granular fotocatalítica para hormigón o mortero, que incluye dicha mezcla y sus usos en los campos de construcción o renovación de edificios o revestimientos de carreteras (N° de concesión de patente 7300514). La segunda, ya patentada con fecha en 2004, se refiere al uso de preparaciones fotocatalíticas coloidales de dióxido de titanio (TiO2), dicho componente es acusado de tener actividad pro-inflamatoria en pulmones y el peritoneo, para mantener la apariencia original de productos de cemento, piedra o mármol. (N°6824826). Este mismo año lanzaron una investigación y publicación que estaba enfocada hacia adoquines fotocatalítico, a base de cemento, para la pavimentación y descontaminación urbana. Dicha publicación se dio a conocer en 2006, al año siguiente publicaron una evolución de dicha investigación.Tras varios años de investigación sobre la fotocatálisis, en el año 2007, se patento la mezcla fotocatalítica granular para mortero y hormigón y su uso (N°7300514). Se ha descubierto de manera sorprendente que al mezclar partículas de fotocatalizadores de diferentes granulometrías (o clases granulares), que tienen diferentes superficies específicas, en una composición para concreto o mortero, con un aglomerante hidráulico, sin sinterizar, es posible obtener un efecto fotocatalítico mejoró sustancialmente en relación con los fotocatalizadores de esta clase granular inicial.Esto permite preparar hormigones o morteros que tienen una importante función fotocatalítica y, por lo tanto, un carácter autolimpiante, al degradar las moléculas retenidas en su superficie o adyacentes a su superficie. Como resultado, la presente invención se refiere a una mezcla granular fotocatalítica para mortero u hormigón constituida por partículas de n clases granulares, que tienen diferentes superficies específicas, siendo n un número mayor o igual a 2.En los años 2011 y 2012, se dieron los dos últimos patentamientos, el primero es un estudio, nuevamente, sobre la pavimentación, pero en este caso de alta durabilidad. El segundo (N° 8092586 ), describe un compuesto fotocatalítico que comprende un dióxido de titanio soportado en metacaolín. En comparación con las realizaciones conocidas del sector, el compuesto de la presente invención hace posible obtener aglutinantes y productos derivados con alta eficiencia fotocatalítica, incluso cuando se usan cantidades de fotocatalizadores que son menores que las presentes en productos de la técnica anterior.Ya hablando sobre beneficios, las paredes cubiertas con cemento autolimpiante cortan los niveles de NOx, una colección de compuestos de nitrógeno que son perjudiciales para la salud humana y crean smog bajo, en el aire circundante hasta en un 80%. También reducen otras sustancias tóxicas conocidas, como el plomo, el monóxido de carbono y el dióxido de azufre. Y debido a que el complejo de Cassar mantiene limpias y brillantes las fachadas de los edificios, mejora no solo la salud física sino también el bienestar mental de los ciudadanos urbanos.

Definición ciencia

Como se mencionaba anteriormente este material esta producido en base a cemento Portland fotocatalítico blanco con caliza. Proporciona propiedades autolimpiantes, descontaminantes y bacteriostáticas, empleando la actividad del Dióxido de Titanio (TiO2), como base principal del aditivo.

Procesamiento

La piedra caliza y arcilla, se excavan en depósitos generalmente ubicados cerca de las plantas de cemento y se someten a un tratamiento de trituración. La actividad de extracción se acompaña del estudio de las técnicas de restauración y recuperación del paisaje.El primer paso de procesamiento consiste en moler y secar, se transforman en polvo muy fino y se almacenan en forma de harina homogeneizada. Dicha harina, se coloca en hornos donde se alcanza una temperatura de 1450 ° C, obteniendo el clínker cuyos componentes dan la actividad hidráulica al cemento. El clínker a la salida del horno se somete a un proceso de enfriamiento.Todos los datos relacionados con la producción, la calidad y los controles medioambientales aparecen en los monitores las 24 horas del día, los técnicos se encargan de posibles anomalías o riesgos.La fase final del proceso de producción consiste en la molienda del clínker con yeso y cualquier componente secundario. De esta forma, se obtienen cementos adecuados para los más variados tipos de uso. Los diferentes tipos de cemento se almacenan en silos especiales. El cemento a granel o en bolsas de 25 kg llega al cliente y está listo para cualquier tipo de uso.

Propiedades

Normas

NORMATÍTULO
ISO 22197-1Cerámicas técnicas (cerámicas avanzadas, cerámicas técnicas avanzadas). Métodos de ensayo relativos al funcionamiento de materiales fotocataliticos semiconductores para la purificación del aire. Parte 1: Eliminación del óxido nítrico.
IRAM 1662Hormigones y morteros. Determinación del tiempo de fraguado. Método de resistencia a la penetración.
IRAM 1602-1Método por presión para la determinación del contenido de aire en mezclas frescas de hormigones y morteros – Método A
IRAM 1602-2Método por presión para la determinación del contenido de aire en mezclas frescas de hormigones y morteros – Método B
IRAM 1601Agua para morteros y hormigones de cemento.

Puesta en obra

Proveedores

DistribuidorFormato Nombre Origen Marca
Active Walls .S.L /Josep Ricart 13bis, 08980 Sant Feliu Llob / Fax +34.933734250 / comercial@activacolors.comBolsa 25 Kg
Photo SiloxaneEspañaActiva Walls S.L
Grupo Puma / https://www.grupopuma.com/es-WW/empresa/contactoSacos de 25 Kg de papel plastificado.

Morcemsec / Active Capa Fina CR CSIV W2MéxicoGrupo Puma
Grupo Puma / https://www.grupopuma.com/es-WW/empresa/contactoSacos de 25 Kg de papel plastificado.
Morcemsec® Active Proyectable CR CSIV W2MéxicoGrupo Puma
Italcementi (Via Stezzano, 8724126 Bergamo) Tel: 035 396 874 staff.direzionevendite@italcementi.it25 kg, Big Bag
i.active TECNO BIANCOItaliaItalcementi

Bibliografía

http://activacolors.net/PDF/esp/19-2014-3C-Stucco-FC.pdf
http://enclave.cev.es/unoi/mortero-foto-catalitico/
http://bibliotecadigital.usbcali.edu.co/bitstream/10819/4029/1/Dioxido_Titanio_Material_Gonzalez_2015.pdf
https://www.grupopuma.com/services/pdf/777
https://www.fym.es/es/iactive-tecno-blanco-425-r
https://www.italcementi.it/it/alla-scoperta-del-cemento
https://www.italcementi.it/it/txactive-principio-attivo
https://www.construmatica.com/construpedia/Archivo:Mor24.png
https://www.construmatica.com/construpedia/Archivo:Mor24.png
https://www.iso.org/standard/65416.html
https://www.iso.org/standard/60857.html
https://register.epo.org/application?number=EP97936651&tab=main
https://patents.justia.com/inventor/luigi-cassar
https://worldwide.espacenet.com/publicationDetails/biblio?DB=worldwide.espacenet.com&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=19991006&CC=EP&NR=0946450A1&KC=A1
https://data.epo.org/publication-server/pdf-document?pn=0946450&ki=B1&cc=EP&pd=20110216
https://www.pureti.co/assets/files/2012-European-paper-on-PCO-and-Construction-Materials.pdf

Machimbre pino Elliotis

Síntesis

El machimbre de Pino elliotis es una madera proveniente del árbol Pino elliotis, de madera blanda, liviana, medianamente penetrable. Está es utilizada mayormente para revestimientos, muros macizos, tiranterias, encofrados y hoy en día además para estructuras de techos. El machimbre son tablas de madera cepillada, que poseen rebajes y cortes en sus cantos que sirven para poder ensamblar las tablas y así lograr una sucesión de piezas encajadas entre sí, de superficie lisa, uniforme y sólida. Se obtienen directo de los pinos y luego pasa por todo el procesamiento y por último la etapa de darle formato a los cantos. Es un material muy utilizado ya que es fácil de conseguir, muy versátil y de bajos costos, debido a que hay en abundancia.

Contexto histórico, social y económico

El machimbre es un método de unión de maderas que su primera utilización fue para los pisos. Los pisos de madera fueron reconocidos primeramente como un elemento decorativo en el 1683, cuando fue utilizado en el Palacio de Versalles. Solo podían acceder a este tipo de pisos las personas de mayor dinero, ya que eran fabricados a mano y muy costosos. En la década de 1700 y 1800, las planchas de madera para pisos eran de muy grandes dimensiones, y los extremos de los tablones debían ser clavados a las vigas, no había como hoy en día dimensiones estándar. La técnica de machimbre (tongue and groove) era realizada a mano. Previamente al machimbre los pisos de madera eran simplemente tablones de madera que eran instalados uno al lado del otro, que debido a que no había uniones con encastre, el espacio en la unión por mas chico que sea filtraba la temperatura y la humedad, dejando así pasar el aire frio del sótano al lugar habitable. Luego de esto se diseñó una unión en forma de L, que encajaba los tablones entre sí, así cuando la madera se achicaba con el tiempo el espacio entre la unión se encontraba cubierto por la unión del tablón adyacente. Gracias a la Revolución Industrial la invención de maquinarias para trabajar la madera, permitieron la producción en masa de ellas. Permitiendo cortar y moldear las maderas en las dimensiones que precisaban. Debido a ello, en 1898, la realización de las maderas machimbre podían realizarse en masa, permitiendo así que sean maderas a las que mas personas puedan acceder. Este método de machihembrado permitía que la “lengua” del tablón se introduzca en la ranura del otro tablón uniendo así los tablones y permitiendo una base mas resistente con un acabado liso. Para lo años 1900-1920 tener un piso de machihembrado se había vuelto algo común y a lo que todos podían acceder. En los años 30 hubo una decaída en el mercado, ya que con la Segunda Guerra la gente no tenía suficiente dinero y vivían con lo que tenían. Ya en el 1940 con el retorno de los veteranos, se debían construir más casas en las que utilizaban mucho el machimbre. Hoy en día es un material muy versátil. Sigue utilizándose mayormente en pisos, como por ejemplo los llamados pisos flotantes, pero a su vez también es utilizado para estructuras de techos, revestimientos decorativos de paredes, mueblería, decoración, encofrados, muros, etc. Es un material de costo bajo y de fácil obtención y manipulación. El machimbre se pino se obtiene del Pino Elliotis. Este tipo de madera es abundante en la tierra y al ser una madera de característica blanda, es de crecimiento rápido, por lo que al sembrar los pinos nuevos crecerán más rápido a comparación de una madera dura. Una ventaja muy grande del machimbre de pino es que es totalmente reciclable y reutilizable, y en caso de no reciclarlo es como cualquier madera biodegradable, lo que no deja huella ambiental. Debido a la explotación de estos árboles se podría producir deforestación, es por ello que, por cada árbol talado, debe ser sembrado el doble de árboles.

Definición ciencia

El machimbre de Pino Elliotis está compuesto únicamente por madera de Pinus Elliotis. Ésta es una madera con albura amarilla. Sus anillos de crecimiento están bien demarcados, por zona de tejido de color mas oscuro, bien notable. Esta madera posee un brillo medio y olor característico, textura mediana heterogénea de grano derecho. Es una madera blanda a semidura, resistente al esfuerzo de flexión, medianamente resistente a compresión paralela y poco resistente a compresión perpendicular. El machimbre son los tablones de dicha madera descripta, que pose los cantos labrados de dos maneras, el lado macho (una pestaña sobresaliente) y el lado hembra (forma de canal); pensado así para lograr una unión perfecta. Es por eso por lo que se le da el nombre de machihembrado a este sistema de ensamblaje.

Procesamiento

El primer paso de obtención de este material es obtener la madera, por el proceso de tala, en el cual leñadores cortan y quitan las ramas y la corteza de los árboles. Luego se transportan al aserradero, en donde dividen los trozos del tronco según sus usos. Se originan tirantes, tablas y listones que luego son clasificados. El siguiente paso es el secado de la madera, este se realiza en cámaras con protocolos automatizados que duran entre 3 y 4 días. Luego la madera pasa a la etapa del moldurado, este es el proceso en el cual se le da forma y se labran los cantos de los listones dando, así como resultado al machimbre. Por último, los tablones son cepillados, para así tener un acabado prolijo.

Propiedades

Normas

NORMATÍTULO
IRAM 9524Piezas de madera de pino resinoso (Pinus Elliotti y Pinus Taeda) machiembrada para revestimientos.
IRAM 9670Madera estructural. Clasificación y requisitos. Clasificación en grados de resistencia para la madera aserrada de pinos resinosos (Pino elliotti y Pino taeda) del noreste argentino mediante una evaluación visual.
IRAM 9525Pino resionoso (Pinus Ellioti y Pinus Taeda) sin cepillar. Medidas y clasificación de piezas en grados de calidad por defecto.
IRAM 9552-1Pisos de madera. Parte 1 – Definiciones y clasificación.
IRAM 9552-2Pisos de madera. Parte 2 – Requisitos generales, marcado y evaluación de la conformidad

Puesta en obra

Proveedores

DistribuidorFormato Nombre Origen Marca
Sodimac / https://www.sodimac.com.ar / 0810-666-7634½ x 4 ¨
1 x 6 ¨
½ x 5 ¨

Machimbre Pino ElliotisArgentinaMSD

Easy / www.easy.com.ar / infocl@easy.com.ar
½ ¨x 5¨x1.52 m
1¨ x 6¨ x 3,66 m
½¨ x 5 ¨ x 3,44 m

Machimbre Pino ElliotisARGENTINAVictoria
Maderas Tabay / https://www.maderastabay.com.ar  / maderastabay@hotmail.com1/2″ x 4″
1/2″ x 5″
3/4“x 5”
1” x 6”
Machimbre Pino ElliotisArgentinaTabay
Maderera Newton / http://www.madereranewton.com.ar / (54) 03327-4523111/2″ x 4″
1/2″ x 5″
1/2″ x 6″
Machimbre Pino ElliotisargentinaMaderas Newton

Bibliografía

Dan Cooper, The History of Wood Flooring.

Obtenida el 25 de abril del 2019, de https://www.oldhouseonline.com/interiors-and-decor/the-history-of-wood-flooring

The Finishing Store, Hardwood flooring facts

Obtenida de https://finishingstore.com/hardwood-flooring-facts/

INTI, Caracterización de la madera, Pino Elliotti

Obtenido el 01 de enero del 2016, de https://www.inti.gob.ar/maderaymuebles/pdf/caracterizacion_maderas/PINO_ELLIOTTI.pdf.

INTI, Pinos, propiedades mecánicas y físicas

Obtenida el 01 de enero del 2004, de

https://www.inti.gob.ar/publicaciones/servicios-industriales/servicios-sectoriales/madera-y-muebles – pinos.pdf

Suirezs, M y Berger, G.  “Descripciones de las propiedades físicas y mecánicas de la madera”. 1ª ed. Posadas: Editorial Universitaria de la Universidad Nacional de Misiones, 2010.

Wood Products.fi, “Thermal properties of Wood”, 

Obtenida de https://www.woodproducts.fi/content/wood-a-material-2

Confemadera, Varios Autores, “Conceptos básicos de la construcción con madera”, 1ª ed. Madrid, España: Editorial CONFEMADERA, 2010

Industrias Norfor, obtenido de http://www.norfor.com.ar/images/Norfor.pdf

Instituto Argentino de Normalización y Certificación (IRAM), Normas publicadas, 

Obtenida de https://catalogo.iram.org.ar/#/home 

Placa de fibrocemento

Síntesis

Este se constituye por una mezcla de un aglomerante inorgánico hidráulico (cemento) o un aglomerante de silicato de calcio que se forma por la reacción química un material silíceo y un material calcáreo, reforzado por fibras orgánicas, minerales y/ofibras inorgánicas sintéticas. Para fabricación se coloca, con las siguientes proporciones, en una mezcladora _ 1 bolsa de cemento_ 5 de arena _ 1bolsa de jibra _ 1pos de piedra_ 1medida de aditivos. Luego se retira yse coloca en un molde, que este se encuentra preparado con aditivos, aceites, caldo de cemento, para que este tenga un mejor agarre del material. Se expande deforma regular, para lograrel espesor deseado (1/2 pulgada, 1pulgada etc.), se le pasa un fratacho para afinar y dar el acabado final; Se deja secar y se desencofra, obteniendo la placa lista. Son impermeables yfáciles de cortar, perforar. Se utilizan comomaterialdeacabado, también seemplean comosoporte para el recubrimiento de parámetros exteriores y e nforma de tuberías, tejado. Son muy ligeros, vienen deforma lisa yondulada, yes relativamente económico. • Cubiertas. Fachadas. Tubo agua presión. Tubos drenaje. Depósitos de agua. Chimeneas. Piscinas

Contexto histórico, social y económico

– Alrededor del año 1900, se ideo esta placa, por el ingeniero Ludwig Hatschlek (austriaco)
– En España se producía mediante varias marcas comerciales, para su fabricación se utilizaba el *amianto como fibra de refuerzo, pero cuándose hicieron patenteslos problemas de *asbestosis, fueabandonada
paulatinamente en distintos paises. (en España en 1990); ( en 2002 ya no existía ‚su fabricación con amianto en ningún país)
Su susticion fue probada a partir de fibrasde celulosa, fibras vinílicas o fibra de vidrio siendo esta ultimala que ha tenido la mayor aceptación por parte delmercado, al no sermaterial nocivo para la salud, yfavor mejoro las propiedades mecánicas delfibrocemento.
En la actualidad se ha empezado a utilizar lafibra de vidrio AR( alcah resistente) este ofrece un refuerzo superior al polipropileno que fue el producto sustito en elmomento que se dejó de usar el amianto .contieneoxido de circonio en un 14% aproximado y laalcalinidadd e l cemento no los afecta se puede adicionar hasta un 3%
(abestosis): enfermedad que causa fibrosis pulmonar, se origina ‘por contaminación de fibras deamianto
• (amianto): grupo de minerales metamorfocosfibrosiscompuesto desilicato de cadena doble;tienen fibras largas yresistentes, que se pueden separar fácilmente.
-El c á n c e r d e o r i g e n o c u p a c i o n a l v i n c u l a d o c o n el fi b r o c e m e n t o e s t á o r i g i n a d o p o r l a i n h a l a c i ó n d e fi b r a s d e asbesto (amianto), y puede corresponder a:
-1. mesotelioma, cáncer para el que las fibras de asbesto constituyen un factor causal necesario.
2-. otros tipos de cáncer (cáncer de pulmón, laringe, digestivos, vejiga, encéfalo, etc.), en los que elamiantoes sólo uno de los factores causales, pero no alcanza la categoría dec a u s a necesaria, ya que estos tumores pueden ser originadosp o rotras múltiples causas.
El impacto sobre el ambiente de este material evoluciono con el tiempo, a pesar que sus materias primas sean abundantes en el planeta, esta termina de efectivizar suscondiciones cuando se suplanta lasfibras orgánicas por el amianto, haciendo así que ‘esta no sea contaminable n iperjudicial para l asalud del humano.

Definición ciencia

Este se constituye por una mezcla de un aglomerante inorgánico hidráulico (cemento)o un aglomerante de silicato de calcio q u e sef o r m a por la reacción química un material silíceos y un material calcáreo, reforzado porfibras orgánicas,minerales y/ofibras inorgánicas sintéticas.
Esto mezclado con agua, aditivos, piedras, arenay cemento; ys u proceso de fabricación definen la placa fibrocemento.

Procesamiento

Materias primas:
•Caliza: Roca sedimentaria formada principalmente por carbonato de calcio y que se caracteriza por presentar efervescencia por acción de los ácidos diluidos en frío.
Arcilla: Roca sedimentaria descompuesta constituida por agregados de silicatos de aluminiohidratados, procedentes de la descomposición de rocas que contienen feldespato, comoe l granito. Presenta diversas coloraciones según lasimpurezas que contiene, desde el rojo anaranjado hasta el blanco cuando es pura.
Silicato de calcio: se utiliza portland, obtenida comoresiduode la industriadel acetileno o cloruro de calcio; como fuente se silicio se utiliza cascarilla de arroz coproducto o residuo agro-industrial de la industria arrocera o sílice en polvo. El proceso comprende la mezcla y homogeneización de una fuente de calcio y una de silicio y un posterior tratamiento térmico de la mezcla a temperaturas entre 400°C y 900°C. Asimismo, la presente invención se refiere al uso de silicatos de calcio preparados mediante este procedimiento como
captadores selectivos de COz en corrientes gaseosas, mediante proceso de carbonataciónen condiciones húmedas a presión y temperatura ambiental, generando al mismo tiempo,
calcitas con potencial aplicación industrial.
Yeso: Es un producto elaborado a partir de un mineral natural denominado igualmente yeso o aljiez (sulfato de calcio dihidrato: CasO.2H,0)
Fibras inorgánicas: Las fibras inorgánicas están constituidas principalmente por los
productos químicos inorgánicos, en base a elementos naturales tales como carbono, silicio y boro, que, en general, después de recibir tratamiento a temperaturas elevadas se transforman en fibras.
Carbono:N o metal sólido que es el componentefundamental de los compuestos orgánicos y tiene la propiedad de enlazarse con otros átomos de carbono y otras sustancias para
formar un número casi infinito de compuestos; en la naturaleza se presenta en tres formas: diamante, grafito ycarbono amorfo o carbón;en cada una de estas formas tiene muchas aplicacionesindustriales.
Silicio: Es un no metal sólido, de color amarillento, que se extrae del cuarzoy otros minerales y es el segundo elemento más abundante en la Tierra después del oxígeno; se utiliza en la industria del acero como componented e las aleaciones desilicio y acero, en la fabricación de transistores y circuitos integrados, y sus silicatos, en la fabricación devidrio, barnices, esmaltes, cemento, porcelana, etc. Boro: Es un elemento metaloide, semiconductor, trivalente que existe abundantemente en el mineral bórax. Hay dos alótropos del boro; el boro amorfo es un polvomarrón, pero el boro metálico es negro. La forma metálica es dura (9,5 en la escala de Mohs) y es un mal conductor atemperatura ambiente. No se ha encontrado libre en la naturaleza.

Propiedades

Normas

NORMATÍTULO
IRAM 11660Placas planas de fibrocemento, libres de asbesto. Requisitos.
IRAM 11661Placas planas de fibrocemento, libres de asbesto. Métodos de ensayo.
2.2.2.8TERMINACIONES – REVESTIMIENTOS EXTERIORES – Revestimientos de Fibrocemento
2.2.4.8TERMINACIONES – REVESTIMIENTOS INTERIORES – Revestimientos de Fibrocemento

Puesta en obra

Proveedores

DistribuidorFormato Nombre Origen Marca
GYPSUMPlacasPlacas fibrocementoArgentinaDryboard
ETERNITPlacasPlacas fibrocementoArgentinaSuperboard
ETERNITPlacasPlacas fibrocementoArgentinaSiding
TITUCaolita, SA.PlacasPlacas fibrocementoEspañaCimianto España, S.A.

Bibliografía

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Chapa ondulada fibrocemento

Síntesis

El material está constituido por una mezcla de un aglomerante inorgánico hidráulico (cemento) o un aglomerante de silicato de calcio que se forma por la reacción química de un material silíceo y un material calcáreo, reforzado con fibras orgánicas, minerales y/o fibras inorgánicas sintéticas. Respecto a los métodos de fabricación tenemos la materia prima que es llevada a una preparación para así formar una pasta y dirigirse a la laminadora, donde dependiendo el producto se derivará o a un moldeado, pero en este caso será de ondulación que posteriormente irá a una cámara de secado, una vez seco de tendrá que desmoldar manualmente o con una desmoldeadora y como etapa fina irán a un tren de decoloración y estará el producto terminado [5] En cuanto la disponibilidad ya no se comercializa más placas de fibrocemento con amianto, incluso en países europeos está prohibido emplearlos ya que son nocivos para el cuerpo humano. Por lo tanto si se pueden conseguir productos de fibra de vidrio sin amianto. [6] Se puede aplicar en muros interiores y exteriores, pisos, entrepisos, techos, cielos rasos y muebles con una gran resistencia a impactos y a la humedad que otorga una durabilidad prolongada.

Contexto histórico, social y económico

El fibrocemento aparece en el Año 1.900 gracias al ingeniero austriaco Ludwig Hatschek quien le dio origen a este novedoso descubrimiento en el área de la construcción, se utilizó principalmente para fabricar placas o paneles compactos que varían de su forma permitiéndole así utilizarlos sobre techos y revestimiento de edificaciones. A este invento lo llamo Eternit (eterno), aludiendo a su durabilidad, [1] Este material fue muy novedoso ya que cuenta con propiedades importantes como el de ser resistente a cambios bruscos de temperatura y a agentes químicos, impermeable, aislante acústico, e incombustible. [2] Actualmente se aplica en planchas onduladas para cubiertas, paneles para naves ganaderas, paneles para fachadas ventiladas, revestimientos, tubos para agua a presión (para riego o para abastecimiento de agua potable), tubos de alcantarillado por gravedad, depósitos de almacenamiento de agua, chimeneas de ventilación. En el año1907 El ingeniero de origen italiano Adolfo Maza, crea la primera máquina de producción de placas de fibrocemento a nivel industrial. En primer lugar podemos señalar que el fibrocemento presenta un coste más económico en comparación con la madera o el aluminio, por ello este material es cada vez más normal encontrarlo en naves ganaderas e industrial. [4] Hay que tener en cuenta que el fibrocemento se compone de un material que se conoce como amianto, el cual, es un material muy peligroso y altamente contaminante, y que debe ser tratado con mucho cuidado. Por ello, Una vez que el material no se encuentre en condiciones adecuadas este se tiene que retirar del todo y solo pueden realizarlos aquellos profesionales acreditados por el Registro de Empresas con Riesgo de Amianto (RERA). Se procederá a llevarse a cabo la retirada del fibrocemento, siempre realizada por profesionales cualificados y acreditados para este trabajo, garantizando de esta forma evitar no solo daños personales, sino también, daños al medio ambiente debido a la capacidad de contaminación del amianto. Desmontaje: Consiste en la retirada de los paneles de fibrocemento. Este trabajo se puede llevar a cabo de manera manual o con maquinarias especiales. A veces se da el caso en el que el trabajo se realiza de forma mixta, en la que intervienen tanto la persona como la maquinaria. Transporte: El transporte de los restos del desmontaje del fibrocemento se realiza también por profesionales y camiones diseñados de manera especial para esta labor. Destrucción: Los camiones se encargan de transportar los residuos de amianto hacia unas naves especiales, en las cuales se procederá a la destrucción del mismo, sin que el medio ambiente sufra daño alguno.[7] Se lo asocia a una contaminación muy elevada ya que Al tratarse de un producto cancerígeno, no existe concentración segura para la exposición, es decir, la única exposición segura es la exposición cero. El tiempo transcurrido entre la exposición y la aparición de los primeros síntomas de enfermedad puede llegar a ser de hasta treinta años. Ahora están apareciendo los efectos de la exposición en el pasado. Por ejemplo:- Unas 3.000 personas mueren al año en Gran Bretaña debido a enfermedades causadas por la exposición al amianto en el pasado[8]

Definición ciencia

Procesamiento

Se puede considerar que la etapa fundamental del proceso es el sector de Preparado donde en este lugar se aplica la materia prima como cemento, agua, celulosa, crisotilo, etc.que compondrá la pasta para la producción, luego pasa a la laminadora en este sector se encarga de convertir la pasta en lámina donde es vital importancia conservar constante los espesores, después de esto la maquina Hatschek esta cuenta con cinco divisiones llamadas cubas esta maquina es el medio por convertir la pasta en lamina. Al concluir con esto continua llend hacia el rodillo frmador de pasta o “RODO” donde en este sector se harán las marcas, o las ondulciones, Las ondulaciónes la Línea principal cuenta con dos pórticos que permiten fabricar la placa ondulda o plana. El “Portico” se le llama a la estructura metálica que cuenta con tres o dos ventosas, capaces de crear vacio gracias a ventiladores que están colocados en la arte superior de cada una. Cada pórtico cuenta con un sistema de translado de mesas para las pasta co moldes o solo para los moldes esto deenderade que pórtico se refier. La placa se desplazará luego sobre tres bandas de PVC donde luego llebaran las laminas al rodo grabadorque es un cilindor mettalico que en su cara exterior tiene formas en alto relieve permitiéndole asi grabar formas sobre la placa frezca, dándole así texturas en una de sus cara. Cada pórtico cuenta con sus cuchillas longitudinales y también transversalmenteestas tomaran la fución de realizar los cortes de la placa [9]

Propiedades

Normas

NORMATÍTULO
NMX-C-433-ONNCCE-2014INDUSTRIA DE LA CONSTRUCCIÓN FIBROCEMENTO-LÁMINAS ACANALADAS DE FIBROCEMENTO NT- ESPECIFICACIONES Y MÉTODOS DE ENSAYO (CANCELA A LA NMX-C-433- ONNCCE-2004)
UNE-EN 494:2005Especificaciones de producto y métodos de ensayo. Sistema de evaluación de la conformidad: 3 /4.
UNE 88001Placas onduladas y nervadas de fibrocemento. Criterios para su utilización en cubiertas
ISO 390Productos de fabricación. Muestreo e inspección
UNE-EN 494/A1:2000Placas onduladas o nervadas de fibrocemento y sus piezas complementarias para cubiertas. Especificaciones de producto y métodos de ensayo.

Puesta en obra

Proveedores

DistribuidorFormato Nombre Origen Marca
Argentina

Bibliografía

1
2
3
4
5
6
7
8
9
10
11

Membrana de burbujas de aluminio

Síntesis

La membrana de burbujas de aluminio está compuesta por un colchón de burbujas de aire encapsulado en polietileno recubierto por dos capas de aluminio puro, pulido y virgen. El foil de aluminio se obtiene a través de un proceso de fundición de aluminio, en base al cual se obtienen planchas o secciones rectangulares que luego se combinan con otros materiales. Brinda soluciones eficientes contra la pérdida de energía: minimiza la conductividad del calor, generando aislación térmica, hidrófuga y una barrera de vapor. Por sus características es recomendable para utilizar en techos, en galpones avícolas y porcinos, cobertizos, naves industriales. Es útil para la aislación térmica en techos, cielorrasos, bajo tejas, chapas, tinglados; bajo losas de hormigón; en conductos de ventilación; entre paredes; bajo piso flotante o radiante. Existen varios fabricantes y proveedores, por lo que se consigue fácilmente.

Contexto histórico, social y económico

El plástico de burbujas fue inventado, por accidente, en 1957 por los ingenieros Alfred Fielding y Marc Chavannes en Hawthorne, Nueva Jersey. Es manejable, fácil de cortar, ligero, flexible, e impermeable.
Los ingenieros buscaban crear un papel de 3 dimensiones para poner en las paredes que fuera sencillo de limpiar. Para ello utilizaron dos cortinas plásticas de baño y con aire crearon un decorado tridimensional, lo que acabó siendo el Film Alveolar, el plástico de burbuja o polietileno con burbujas. Comenzó utilizándose para embalajes porque protege, acolcha y acuña los productos contra los golpes.

Hoy en día, además de utilizarse para la protección de mercadería, gracias a sus características y específicamente a sus propiedades de aislación térmica y acústica, combinado con el aluminio que provee una barrera radiante de muy alto nivel, resistencia a la corrosión, ligereza, forman un producto que miniza la transferencia calórica, generando un aislante térmico, hidrófugo y barrera de vapor.
En el ámbito de la construcción se puede emplear tanto en galpones o naves industriales como en casas, en techos, pisos y paredes. También se puede usar en mantas cobertoras para piscinas y en ductos de aire. Otro sector en el que se aplica es en granjas y corrales de aves y porcinos ya que disminuye la necesidad de velocidad en la ventilación sobre los animales; evita gases producidos por las camas de los animales; reduce la mortalidad por estrés térmico y contribuye a reducir costos de alimentación.
El thermo foil (nombre comercial) es innovador ya que también evita la condensación, no produce puentes térmicos en su instalación, no desprende partículas tóxicas. Al ser una barrera efectiva contra la humedad, hongos, roedores y hormigas, es de mayor durabilidad. A comparación de otros materiales, es muy flexible, resiste a los impactos, quebraduras y tracción. Se adapta a trabajos de renovación y es reciclable. Al evitar la pérdida de calor y frío, produce un ahorro de 60% en el consumo de energía. Si bien su producción es de costo medio/alto, quienes usen el producto terminado ahorran dinero gracias al calor economizado por el aislamiento, y al ser un producto liviano no se necesitan gastos adicionales en transporte e instalación.

El aluminio es un metal muy abundante en la tierra, actualmente el precio de su extracción es moderado ya que este metal no férreo es el más producido. Y si bien, el aluminio es 100% reciclable, su extracción, sin embargo, tiene numerosos problemas de impacto ambiental, como las grandes emisiones de CO2 que derivan de su producción, y la emisión de partículas que contribuyen al efecto invernadero. Además de la deforestación de los bosques de los países donde se extra el mineral de aluminio y la destrucción de hábitats de numerosas especies.
La producción de aluminio conlleva un gran consumo energético, se necesitan 15.000 kWh en forma de calor y corriente eléctrica. Para producir una tonelada de aluminio se generan cinco toneladas de residuos minerales cargados de metales pesados, se emiten una elevada cantidad de dióxido de azufre (30kg), fluoramina (4,5kg) y vapores de alquitrán que contaminan la atmósfera y provocan lluvia ácida.

Definición ciencia

La membrana de burbujas de aluminio, o Thermo Foil, es una barrera radiante constituida con una o dos láminas exteriores de aluminio virgen 100% puro, pulido y de espesor de 10 micrones, dos láminas de polietileno de baja densidad (PEBD) y burbujas de aire encapsulado de 10 mm de diámetro adheridas en éstas.

Procesamiento

La primera fase de la obtención del aluminio consiste en aislar la alúmina de los minerales. Para ello se tritura la Bauxita y se obtiene un polvo fino, luego se mezcla el polvo obtenido con soda cáustica líquida y se calienta la mezcla a baja presión; la alúmina se funde en la soda cáustica, posteriormente se procede a la calcinación de la alúmina obtenida por hidrólisis, decantación y a continuación se filtra el conjunto resultante. Para que la alúmina reaparezca en forma sólida; su obtención se consigue por precipitación. Se conjuntan los cristales de Alúmina, y se le quita la humedad a muy alta temperatura obteniendo un polvo blanco.
En la segunda fase de la obtención del aluminio, que se denomina electrólisis, se descomponer la alúmina en aluminio y oxígeno. La reacción tiene lugar en unas cubas especiales, debido a las altas temperaturas que
se alcanzan en las mismas. el metal fundido se deposita en el polo negativo del fondo de la cuba, mientras que el oxígeno se acumula en los electrodos de carbono. Una vez que se obtiene el aluminio puro, normalmente se le añaden otros metales que le aumentan sus cualidades y propiedades como la resistencia a la corrosión y las características mecánicas y de elasticidad.
El foil de aluminio se obtiene a través de un proceso de fundición de aluminio, en base al cual se obtienen planchas o secciones rectangulares, las que se comprimen con unos rodillos por los que pasa la placa de aluminio. Luego las láminas de PEBD con las burbujas de aire estanco, se agregan en una sola operación de termosellado a 300ºC.

Propiedades

Normas

NormaTítulo
IRAM 11008Resistencia al fuego
IRAM 4065Acústica. Medición de absorción de sonido en sala reverberante
IRAM 11605Resistencia térmica en Sistema Constructivo Standard
IRAM 11601Aislamiento térmico de edificios. Métodos de cálculo.
Propiedades térmicas de los componentes y elementos de construcción en régimen estacionario
IRAM 1735Materiales de Construcción. Método de ensayo de la permeabilidad al vapor de agua

Puesta en obra

Proveedores

Distribuidor Formato Nombre Origen Marca 
FerrocenterRollos de 1x25m; 1x30m; 1,22x25m; 1,22x30m;
1x150m; 1,22x150m.
Alumfoil Confort PremiumArgentinaPolybubTech
AgroRedes PolcomRollos de 1x25m y 1,22x25m.Membrana de burbujasArgentinaPolcom
ArgenConfortRollos de 1x15m y 1x30m.ArgenTech- Burbuja con Aluminio PuroArgentinaArgenConfrt

Bibliografía

1https://agroredes.com.ar/aislantes/membrana-de-burbujas/ (Membrana de Burbujas)
2http://www.ferrocenter.com.ar/aislaciones/burbuja.html (Membrana de Burbujas)
3http://tecnoaislantes.com.ar/thermo-foil/ (Membrana de Burbujas)
4https://www.docdroid.net/gPKllcL/thermo-foil-doble.pdf (Membrana de Burbujas)
5http://www.asfalkote.com/producto/thermo-foil-doble-aluminio/ (Membrana de Burbujas)
6http://aislamax.com.ar/burbujas/ (Membrana de Burbujas)
7http://aislamax.com.ar/planillas/Burbuja_aluminio_30mm_2caras.pdf (Membrana de Burbujas)
8http://www.adicem.com.ar/tecno-thermo-foil.pdf (Membrana de Burbujas)
9https://agroredes.com.ar/wp-content/uploads/2016/12/Membrana-de-Burbujas_Ficha-T%C3%A9cnica.pdf(Membrana de Burbujas)
10http://polybubtech.com/alumfoil/ (Membrana de Burbujas)
11https://www.quiminet.com/articulos/foil-de-aluminio-y-su-fabricacion-22121.htm?mkt_medium=43137&mkt_term=&mkt_content=&mkt_campaign=1&mkt_source=66 (Aluminio)
12https://www.alu-stock.es/es/informacion-tecnica/el-aluminio/ (Aluminio)
13https://www.maupe.com/Empresa/aluminio-origen-usos-caracteristicas/ (Aluminio)
14http://polybubtech.com/polybub-tech/certificados/ (Certificación y normas)
15https://www.rajapack.es/blog-es/productos/film-alveolar-aliado-embalaje/ (Film alveolar)
16http://www.argentinaembalajes.com.ar/materiales-de-embalaje/plastico-de-burbuja.php (Film alveolar)
17http://www.argenconfort.com.ar/producto/aluminizada-3/ (Membrana de Burbujas)
18http://www.star-new-material.com/thermal-insulation-material/bubble-foil-insulation/silver-insulating-aluminum-bubble-foil-heat.html (Membrana de Burbujas)
19https://spanish.alibaba.com/product-detail/foil-bubble-reflective-insulation-reflectix-60573575314.html(Membrana de Burbujas)
20http://aislantesprodex.com/img/cms/fichas-tecnicas-pdf/ficha-tecnica-termoflex-bda.pdf (Membrana de Burbujas)
21http://www.aisrec.com/aislante-termico-reflexivo-laminado-aluminio.html (Membrana de Burbujas)

Cielorraso de lana de vidrio revestido con PVC

Síntesis

Cielorraso de lana de vidrio revestido con PVC es un elemento de construcción compuesto por dos materiales fundamentales, tal como su nombre lo aclara, PVC y lana de vidrio, en donde el PVC es utilizado como membrana desplegable sobre la lana de vidrio . Este material es utilizado para ser aplicado en Restaurantes, gimnasios, salas de espectáculos, oficinas, etc. con el fin de disminuir las reflexiones del sonido innecesarias, mejorar el acondicionado térmico, apto para ser instalado en lugares con alta humedad relativa y fácil de instalar debido a su peso liviano y resistencia al mismo tiempo.

Contexto histórico, social y económico

En 1893, Edward Drummond Libbey exhibió un vestido en la Exposición Mundial Colombina de Chicago que tenía fibra de vidrio con filamentos del diámetro y la textura de una fibra de seda. Fue usado por primera vez por Georgia Cayvan, una actriz de teatro muy conocida en aquella época.
Las fibras de vidrio también se pueden formar naturalmente y se las conoce como cabellos de Pele. Sin embargo, la lana de vidrio, a la que hoy se llama comúnmente fibra de vidrio, no fue inventada sino hasta 1938 por Russell Games Slayter, en la Owens-Corning, como un material que podría ser usado como aislante en la construcción de edificios. Fue comercializado bajo el nombre comercial Fiberglass, que se convirtió desde entonces en una marca vulgarizada en países de habla inglesa. La fibra de vidrio se conoce comúnmente como un material aislante. También se usa como un agente de refuerzo con muchos productos poliméricos; normalmente se usa para conformar plástico reforzado con vidrio que por metonimia también se denomina fibra de vidrio, una forma de material compuesto consistente en polímero reforzado con fibra. En 1926 se produce la creación de la empresa de investigación aplicada o de Seva, en Chalon-sur-Saone. Responsable del diseño y mantenimiento de las máquinas para las botellas de la nueva planta de fabricación de a Saint-Gobain SEVA se está convirtiendo en el “”mecánico”” de todo el Grupo. También proporciona placas de fibra de vidrio para la fabricación de lana de vidrio. En 1932 El fabricante de vidrio de Owens-Illinois inventa una fibra industrial de vidrio soplado sobre un tambor. Este nuevo método supera a lo que existe en Europa en términos de calidad de la fibra y la productividad. Saint-Gobain adquiere los derechos para lanzar pronto el aislamiento.
En 1967 CSG A través de una Joint-venture entre BPB y Saint-Gobain salen a vender lana de vidrio en los Estados Unidos, el AS Owens Corning comenzó a competir en su propio territorio. Entre los años 1957 y 2007 casi un centenar de líneas de producción se han instalado en todo el mundo. Esta tecnología se ha extendido a todos los continentes. Al mismo tiempo, ha construido una red de concesionarios. Un 16 de Marzo de 1998 se firmó el protocolo de Kyoto en Japón. El mundo se dio cuenta del cambio climático y de sus consecuencias previsibles, si no se hace nada para reducir las emisiones de gases de efecto invernadero. El aislamiento de edificios, lo que ahorraría millones de barriles de petróleo cada año, se convirtió en un problema mundial. El impacto ambiental era drástico. A partir de ello se comenzaron a crear nuevos aglutinantes en el mercado donde estos productos ya no emiten tantos compuestos orgánicos volátiles. Hoy en día el mercado de la lana de vidrio toma en cuenta esta sustentabilidad del material y se lo lleva a su máximo potencial en cuanto a sus propiedades para seguir manteniendo sus mismas funciones.

Definición ciencia

La lana de vidrio es una fibra mineral con una enorme cantidad de filamentos de vidrio. Entre estas fibras hay espacios con aire, estas son importantes para el aislamiento térmico. Hablando ahora del material PVC, este está compuesto, según sus fabricantes por un 48% de petróleo (dañino a la salud)  y un 52% de sal común. Sin embargo a la hora de venta, sus fabricantes no suelen nombrar los elementos de composición dañina, debido a obvias razones, como lo es el petróleo.

Procesamiento

Para la realización de este material se deben conocer las materias primas que compone cada elemento. En el caso de la lana de vidrio, es un aislante acústico elaborado por las siguientes materias primas: Se extrae arena, vidrio reciclado y diversos aditivos, los cuales son fundidos en un horno a una temperatura de 1450°C. El vidrio es convertido en fibras. Para esto se recurre a un método de alta velocidad similar al utilizado para fabricar algodón de azúcar, forzándolo a través de una rejilla fina mediante una fuerza centrífuga, enfriándose al entrar en contacto con el aire. La cohesión y resistencia mecánica del producto se obtiene rociando a los millones de filamentos con una solución aglutinante que adhiere a las fibras entre sí. La masa de fibras embebidas en el aglutinante es calentada a una temperatura de unos 200 °C para polimerizar la resina y es curada para darle resistencia y estabilidad. Luego es Revestida en una de sus caras por una delgada lámina de vinilo (PVC) color Blanco gofrado, adherida con adhesivo ignífugo. Finalmente se realizan cortes a la lana y el empacado en rollos o paneles a alta presión previo a paletizar el producto terminado para facilitar su transporte y almacenamiento.

Propiedades

Normas

NormaTítulo
IRAM 11960Los paneles de lana de vidrio son Incombustibles. La reacción al fuego del panel depende del revestimiento.
IRAM 1864Materiales aislantes térmicos. Ensayo de corte, y de determinación del coeficiente de fluencia, para el material del núcleo (espuma rígida de poliuretano, espuma rígida de polietileno expandido, y lana mineral de roca o de vidrio) de paneles aislantes.
IRAM 11900Etiqueta de Eficiencia Energética de calefacción para edificios. Clasificación según la transmitancia térmica de la envolvente.
IRAM 11601Aislamiento térmico de edificios. Métodos de cálculo. Propiedades térmicas de los componentes y elementos de construcción en régimen estacionario.
IRAM 11910-2Determinación de la combustibilidad del material.
ISO 15712Este módulo realiza el diseño y verificación del aislamiento acústico a ruido aéreo y ruido de impactos de los recintos habitables y protegidos del edificio, de la inmisión sonora provocada por el equipamiento del edificio, y de los tiempos de reverberación y áreas mínimas de absorción acústica en los recintos pertinentes, mediante la las normas EN 12354.

Puesta en obra

Proveedores

Distribuidor Formato Nombre Origen Marca 
ISOVER SAINT-GOBAINPAGINA WEBISOVERFRANCIAANDINA PVC
ISOROOF INSULATION MATERIALSPAGINA WEBBLUEMAT S.AARGENTINALANA DE VIDRIO REVESTIDA
INROTS
 ISOVER
PAGINA WEB / FISICO: CNEL. ROSETTI 3414, OLIVOSCAYTER CIELORRASOSBUENOS AIRES, ARGENTINAFIBRA DE VIDRIO

Bibliografía

1· http://www.aislantessh.com.ar/aislantes/14.5.htm
2· https://cayter.com/fibra-de-vidrio/
3· https://www.isover.com.ar/productos/andina-pvc
4· http://bluemat.com.ar/productos/aislante-termico-isoroof-aislantes-termicos-para-techos-membrana.html
5· http://www.ferrocenter.com.ar/landing/aislantes/?network=g&campaign=886199461&group=44310782157&creative=228027080298&keyword=%2Blana%20%2Bvidrio&device=c&gclid=CjwKCAjwr8zoBRA0EiwANmvpYAT4Oe1-qtLf5bnzhTKNHkiZutU-92qDX4INhEacpFn8Da0Q59VMTBoC2yQQAvD_BwE

Espuma de poliuretano impregnada con bitumen asfáltico

Síntesis

Espuma de poliuretano, de base de poliéster, de células abiertas, fabricada en bloques de gran dimensión y con una amplia gama de densidades. Posteriormente se impregna con diferentes tipos de resinas, para brindar distintas propiedades como la absorción acústica, la estabilidad química, la estanqueidad, la capacidad de sellado al ruido, la impermeabilidad al agua, la baja conducción térmica, así como mejorar su resistencia al envejecimiento y preservarla de la oxidación. Cabe agregar que no desprende bitumen bajo el efecto del calor, no es afectado por cambios de temperatura entre 30 a 90°C, y es de fácil manejo. Se utiliza en la construcción como junta impermeabilizante en las carpinterías y como cierre hermético en cubiertas.

Contexto histórico, social y económico

En 1937 el Dr. Otto Bayer estaba buscando una nueva vía para sintetizar fibras que, tras la invención del nylon, había aumentado la demanda de fibras sintéticas para sustituir a la seda. El pretendía conseguir un método de producción de plásticos más sencillo y con menos subproductos. Su invención de la química del Poliuretano (PUR), basada en la reacción de diisocianatos y polioles, se implantó no sin esfuerzo: la idea de sintetizar plásticos a partir de los isocianatos, conocidos por su elevada reactividad e inestabilidad química, no fue bien acogida por sus superiores. A pesar de ello, el 13 de noviembre de 1937 se solicitó una patente sobre los resultados de la investigación y se puede considerar que la patente alemana DRP 728.981 constituye la partida de nacimiento de la química del poliuretano. Tras la Segunda Guerra Mundial comenzó una rápida evolución de la química del poliuretano, así como de la tecnología de transformación, los ámbitos de aplicación y los mercados y, por ende, también de las capacidades. En 1952 se presenta por primera vez un bloque elástico de espuma flexible de la marca Moltopren a partir de diisocianato de tolueno (TDI) y polioles-poliéster. En los años siguientes se introducirá también el poliéter en el mercado, lo cual ampliará claramente las posibilidades de aplicación de los poliuretanos. En los años cincuenta los poliuretanos se utilizaban para la creación de adhesivos, elastómeros y espumas rígidas y, al final de la década, en espumas de acolchado flexibles similares a las actuales. 
A menudo los poliuretanos se combinan con otros materiales para fabricar distintos productos como: paneles de aislamiento para edificios, colchones y muebles tapizados, asientos de automóviles, neveras y congeladores domésticos, calzado, ropa deportiva, etc. Haciendo foco en la resina característica del material, podemos decir que los materiales bituminosos tienen fundamentalmente en construcción un uso muy específico, casi diríamos exclusivo, y es el de proporcionar con técnicas adecuadas buenas barreras aislantes hidrofugas. Además, pueden cumplir otras funciones menores ya sea como adhesivos, solados, películas protectoras u obturando juntas de dilatación. De la utilización de los materiales bituminosos se tienen noticias desde el año 4000 antes de Jesucristo, ya que los habitantes de los valles mesopotámicos de los ríos Eufrates y Tigris lo usaron como impermeabilizante y aglomerante. El petróleo es un material integrado fundamentalmente por hidrocarburos gaseosos, líquidos y sólidos. El asfalto es un betún que forma parte del petróleo y del cual lo extraemos por un proceso denominado destilación. Los así obtenidos son los denominados artificiales ya que la destilación como método industrial provoca una separación de los diversos integrantes del petróleo, quedando un residuo llamado asfalto. Este mecanismo también los ha realizado la naturaleza dejando depósitos de asfalto que se presentan en diversos estados y condiciones, por lo tanto, podemos decir que los asfaltos provienen de los yacimientos naturales y de la destilación artificial del petróleo.
ANPE, la asociación europea PU Europe y las compañías individuales de aislamiento térmico de poliuretano han desarrollado numerosos estudios sobre los impactos ambientales del poliuretano durante su ciclo de vida (ACV). Todos los estudios han demostrado cómo la cantidad de recursos consumidos para la producción del poliuretano se amortiza rápidamente en la fase de uso de los edificios gracias al ahorro de energía determinado por el aislamiento térmico. Durante la vida útil del edificio, estimada en 50 años, el poliuretano ahorra más de 135 veces la energía utilizada para su producción. 
Durante el proceso de fabricación del PUR, se pueden generar sobre el organismo, acciones toxicas o narcóticas, irritación en las vías respiratorias y en la piel, y hasta asfixia por inhalación de gases.

Definición ciencia

Está compuesto por una espuma de poliuretano (polímero termoestable) con forma de paneles o planchas de molde dispuesto a obra o en forma de cintas, impregnado con una resina de bitumen asfáltico

Procesamiento

Los polímeros de uretano se forman por reacción entre un poli-isocianato (usualmente disocianato) y un poliol (poli alcohol). Las reacciones por las cuales se producen las espumas pueden llevarse a cabo en un solo paso o en una secuencia determinada.
Método de una etapa: todos los ingredientes (poliol, agua, isocianato y catalizador) se mezclan simultáneamente y la mezcla resultante es espumada.
Método de prepolimero (del tipo continuo o discontinuo – batch): el poliol y el isocianato reaccionan para dar un prepolimero y el catalizador (agua y amina) se mezclan luego con dicho prepolimero para efectuar el espumado. Mezclados con el catalizador pueden agregarse agentes emulsificantes y colorantes.
Método del cuasi – prepolimero, es una combinación de los dos anteriores. El poliol usado como vehículo reacciona con el disocianato para formar un componente. Se mezclan agua, amina y aditivos con una cantidad adicional de poliol para formar el segundo componente. Ambos componentes se mezclan usualmente en cantidades iguales. 

Propiedades

Normas

NORMATÍTULO
IRAM 1744Materiales aislantes térmicos. Paneles y planchas de espuma rígida de poliuretano. Requisitos
IRAM 1748Materiales aislantes térmicos. Aplicación por proyección in situ de espuma rígida de poliuretano. Requisitos.
IRAM 1864Materiales aislantes térmicos. Ensayo de corte, y de determinación del coeficiente de fluencia, para el material del núcleo (espuma rígida de poliuretano).
UNE 92120-1Productos aislantes térmicos para aplicaciones en la edificación. Productos manufacturados de espuma rígida de poliuretano (PU). Especificación.

Puesta en obra

Proveedores

MARCAORIGENNOMBREFORMATODISTRIBUIDOR LOCAL
CompribandArgentinaJunta selladora, burlete, goma espuma.Existen diversas presentaciones, en 1, 2 y 2.60 m lineales según modelo:Chapa SinusoidalChapa Econopanel (base – cumbrera)Chapa BC-35 (base – cumbrera)Lineal 20 x 20 mm.Lineal 20 x 40 mm.Lineal 20 x 80 mm.Lineal 100 x 100 mm.Teja portuguesa (base – cumbrera)Teja francesaCompriband autoadhesivo para placa de yeso.
Compriband®
(011) 5433-8472/73
www.compribandsrl.com
CompribandArgentinaJunta selladora, burlete, goma espuma.Existen diversas presentaciones, en 1, 2 y 2.60 m lineales según modelo:Chapa SinusoidalChapa Econopanel (base – cumbrera)Chapa BC-35 (base – cumbrera)Lineal 20 x 20 mm.Lineal 20 x 40 mm.Lineal 20 x 80 mm.Lineal 100 x 100 mm.Teja portuguesa (base – cumbrera)Teja francesaCompriband autoadhesivo para placa de yeso.PoliStore
(011) 4488.5953 (011) 4488.6015
www.polistoreargentina.com.ar

Bibliografía

1NORMA IRAM 1744
2NORMA IRAM 1748 (2)
3NORMA IRAM 1864 (3)
4“Introducción a la construcción” Editorial El Politécnico S.A
5http://www.polyurethanes.org
6http://www.compribandsrl.com
7http://www.poliuretano.it/Poliuretano.html
8http://www.fao.org/3/y5013s/y5013s07.htm
9“Construir la Arquitectura, del material en bruto al edificio” Andrea Deplazes.
10“Polyurethane Handbook” Editado por Dr. Günter Oertel.
11Norma ASTM D1623
12Norma ASTM D1621
13https://www.insst.es

Carpintería de madera para ventana con vidrio doble hermético (DVH)

Síntesis

Construidas con madera secada y estabilizada, mediante secaderos automáticos con humedades controladas y establecidas de acuerdo al destino que van a tener.
Los marcos se fabrican con laminados realizados con adhesivos estructurales que garantizan una estabilidad y durabilidad máxima. El maquinado se realiza con fresas programadas para que el ensamble sea perfecto y elegante a la vez. Todos los cantos son redondeados para que no tengan aristas que puedan dañarse o dañar al usuario. En la terminación se pone especial atención, teniendo cada abertura un proceso de pulido, imprimación y terminación de acuerdo al uso destinado.

Contexto histórico, social y económico

El ser humano precisa de luz para poder ver y aire para respirar. Las primeras ventanas, no eran más que huecos en los muros o fachadas de las viviendas, sin acristalar, a fin de dejar entrar la luz y el aire en el habitáculo, que podían ser tapadas con madera o haces de paja. Ya a partir del siglo XVII se introduce el bastidor de madera para sujetar el vidrio. En la medida que los sistemas de producción de vidrio van evolucionando se logra, en 1840, colocar vidrio plano, de mayor dimensión y más económico. Las ventanas irían evolucionando para servir de bastidor a los cada vez mayores tamaños y pesos del cristal con el que forma la unidad de cerramiento exterior.
Las primeras ventanas, no eran más que huecos en los muros o fachadas de las viviendas, sin acristalar, a fin de dejar entrar la luz y el aire en el habitáculo, que podían ser tapadas con madera o haces de paja. Aun cuando se conocía el vidrio desde la época de los fenicios, son los romanos, alrededor del año 60 DC quienes introducen la utilización de vidrieras. En un principio consistirán en pequeños trozos de vidrio sujetos con tiras de plomo. Se hará popular su uso en la construcción de iglesias.
Reconocer cuál es la mejor carpintería exterior para una edificación o de nuestra propia casa es un punto clave que debemos conocer para mejorar nuestro ahorro energético y el aislamiento, entre otros muchos factores. Se reduce el uso de calefacción y aire acondicionado, disminuyendo así las emisiones de CO2 a la atmósfera, tal y como establece el Protocolo de Kioto

Definición ciencia

La madera es uno de los materiales más duraderos, más aún con los avances en su tratamiento al aplicar nuevas tecnologías.
Respecto a las ventanas, la madera es un material muy demandado por su gran capacidad aislante, Además, ofrece muchas posibilidades en cuanto a diseños y acabados. Combina con herraje oscilo batiente, corredera oscilo paralela y cerraja. Ensayada con dispositivo de microventilación. Vidrios hasta 52 mm de espesor. Disponible con umbral transitable.

Procesamiento

La producción de ventanas de madera se ha convertido en un proceso industrial. Acompañado por una única estructura de producción técnica que pone norma a cada detalle de las ventanas alrededor del mundo.
En el futuro este proceso de fabricación será todavía más normalizado, pero individualizado. Esta producción de ventanas de madera ha estimulado el desarrollo de nuevas generaciones de máquinas y herramientas de corte para máquinas que trabajan la madera. Aparte de ventanas tradicionales de madera, se fabrican estructuras compuestas que combinan las propiedades de varios materiales para mejorar la calidad.
Así, la combinación de madera y aluminio en las ventanas es hoy en día un diseño establecido ya que ambos materiales se complementan perfectamente.

Propiedades

Normas

NORMATÍTULO
UNENORMALIZACIÓN EN ESPAÑA / La normalización española de los productos industriales se canaliza a través de AENOR (Asociación Española de Normalización)
CEN/TC 38Protección de la madera / Durabilidad de la madera y clases de riesgo.
ISONORMALIZACIÓN INTERNACIONAL/Las normas que emite este organismo (normas ISO), no son de obligada adopción por lo que los distintos países no están obligados a incorporarlas a sus respectivos catálogos de normas.
NTENORMAS TECNOLÓGICAS DE LA EDIFICACIÓN /Estas normas traducen de un modo operativo los conceptos generales que establecen las Normas Básicas, Reglamentos e Instrucciones de obligado cumplimiento y aplicación general. Regulan cada una de las actuaciones que intervienen en el proceso de la edificación: diseño, cálculo, construcción, control, valoración y mantenimiento. Se clasifican en familias, subfamilias y tecnologías
UNE ENNORMALIZACIÓN EN EUROPA / La normalización europea se canaliza a través del Comité Europeo de Normalización (CEN). La participación de los países en el CEN, se realiza a través de los organismos de normalización de los países miembros, es decir a través de AENOR en el caso de España, DIN de Alemania, AFNOR de Francia, BSI del Reino Unido, etc. Las normas EN son de obligada adopción por todos los países miembros.
NTE-RSRRevestimientos de suelos y escaleras. Piezas rígidas

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
Carmave S. L.
http://carmave.es/
976 19 90 57
CARMAVEPolígono Industrial C/ Navarra Parcela 50500 TARAZONA (Zaragoza) ESPAÑACarmave S.L.
Cristalumi Cerramientos Av O´higgins 3118
(0351) 4672158
info@cristalumicerramientos.com
Cerramientos CristalumiArgentinaCristalumi
Maderas el Tilo
https://maderaseltilo.com.ar
Oficina: 03327-485743
Celular: 156-988-9517
ID: 270*824
Avenida Benavídez 2898 (Ruta 27) Benavídez, Buenos Aires
Maderas el tiloArgentinaMaderas el tilo

Bibliografía

1https://www.patagoniaaberturas.com.ar/aberturas.htm 
2http://carmave.es/producto/matud-serie-m92/  
3https://www.vidrioperfil.com/la/noticia-al/renovate-la-nueva-apuesta-de-ekoglass-
4https://www.anticcolonial.com/naturelovers/madera-natural-puertas-ventanas/

Vidrio de baja emisividad (LOW-E)

Síntesis

Vidrio, creado a fines del siglo XX, recubierto con múltiples capas en forma de lámina de metales y otros compuestos químicos, las cuales generan una elevada transmitancia térmica a la reflexión de los rayos incisivos del sol (rayos infrarrojos), mejorando también la visibilidad a través del vidrio.
El vidrio low-E es un buen aislante térmico en comparación al vidrio común y al vidrio reflexivo tradicional. En su aplicación, se suelen utilizar como vidrio interior en las unidades de DVH (doble vidrio hermético). Un DVH con low-E puede conservar un 66% de la energía perdida por un vidriado simple. Su comercialización está dada, en general, por hojas de 244×330 cm y los espesores posibles son de 4, 5 y 6 mm. Se utiliza mayormente en edificaciones cuyas fachadas requieren de mucha luminosidad como edificios con oficinas o centros comerciales.

Contexto histórico, social y económico

La creación de este material fue impulsado debido a la crisis energética generada en la década de 1970. Los primeros pioneros del mismo fueron Pilkington (empresa japonesa del frupo Nippon Sheet Glass Co., Ltd) y la firma alemana Flachglas Gruppe, utilizando capas delgadas de oro. Esto generaba una pigmentación de color verde, lo que más adelante la empresa alemana Interpane solucionaría impulsando el primer recubrimiento de baja emisividad (low-E) incoloro con la aplicación de capas de plata en el año 1981. (1)
Por motivos de la crisis energética en esa época se buscó la manera de poder reducir dichos consumos tan perjudiciales. Se llegó al hallazgo de que debía haber una solución para reducir la perdida de calor y a la vez poder conservarlo por un tiempo mas prolongado. El vidrio, si bien era un material fundamental en los edificios para la permisividad de la entrada de luz solar hacia los ambientes y oficinas, era uno de los elementos que menor propiedad de conservación de calor había. Esto llevo a realizar la creación de un material que mejore esta cuestión, sin perder los beneficios principales del vidrio en sí. Surgió así el vidrio low-E, un vidrio que bajo la aplicación de capas de distintos componentes por medio de un proceso pirolítico mejoró favorablemente el consumo energético en la época.
Una vez creado el material, DOE junto con LBNL y Suntek Research Associate fueron los que decidieron realizar la primera comercialización del vidrio low-E para las ventanas de la nación de EE.UU. Según DOE, en 1988 el 20% de las ventanas vendidas en los Estados Unidos tenían recubrimiento de baja emisividad.
En la actualidad el vidrio low-E es el más empleado en los EE.UU, Japón y la mayor parte de Europa, aplicado como componente del DVH, superando la aislación de un DVH tradicional compuesto de hasta tres vidrios y dos cámaras de aire. Hoy en día estos vidrios están compuestos por más de una capa plateada que reflejan la luz ultravioleta y permiten la trasmisión de la luz visible. Además, en épocas invernales el sistema funciona a la inversa, ya que mantiene el calor interno del edificio. Podemos decir entonces que su aplicación puede ser tanto en climas cálidos como en climas fríos, dependiendo el uso varía la colocación optima del mismo. Si hablamos para un DVH, en los climas cálidos se combina el vidrio low-E (en el interior de la obra) y un vidrio de control solar (en el exterior). En cambio, para los climas fríos utiliza el low-e con un vidrio incoloro. (2)
Reducción de consumo de energía del ambiente (eficiencia energética), ya que evita la fuga del calor y frio provenientes de los distintos sistemas de calefacción.
Evita la transmisión de calor por radiación, por lo que controla el ingreso de los rayos infrarrojos y UV emitidos por el sol. Reduce el uso de consumo energético producido por calefacciones o aire acondicionados.
Durante su fabricación, la fundición y el flotado del vidrio tienen un alto consumo energético, además se precisa una energía adicional para poder incorporar las capas características del vidrio low-e. De este último consumo adicional, el proceso pirolítico requiere de un 28% más de energía por metro cuadrado que el proceso magnetrónico. (3)

Definición ciencia

Su composición está definida mediante la mezcla de arena de sílice, cal y sosa vertidos en moldes. También se le añade dolomita y arcilla de aluminio para su refinado. Los materiales se fusionan en hornos a altas temperaturas (1500 C y para el refinado 1300 C) (1). Luego se le agregan capas químicas microscópicamente delgadas apiladas entre sí de plata y materiales dieléctricos (cerámicos) por medio del método pirolítico o magnetrónico (2)

Procesamiento

El vidrio low-e se confecciona mediante la creación de un vidrio común, el cual se recubre con películas de distintos materiales (capas microscópicas de plata y materiales dieléctricos), que contribuyen significativamente en las propiedades de rendimiento térmico y visual. Dependiendo el uso que se le aplique se colocan más o menos capas, esto variara, según las capas de plata: el porcentaje de paso de emisividad producida por los rayos infrarrojos y ultravioleta; mientras que las capas dieléctricas protegen las de plata y permiten el paso de la luz visible. Estas películas se aplican a través de un proceso pirolítico o magnetrónico.
El proceso pirolítico: durante el proceso de flotación se aplican las capas a alta temperatura sobre la superficie del vidrio.
Proceso Magnetrónico: Se aplican las capas fuera de flotación, y se los somete a una cámara de vacío, coating prácticamente invisible. (1)

Propiedades

Normas

NORMATÍTULO
EN 410/673 (1)Factor U europeo (W / m2 k)
EN 1096-2 (2)Vidrio para la edificación: Requisitos y métodos de ensayo clase A, B y S
ISO 15099 (3)Rendimiento Térmico
NFRC 100-2002 (4)Condiciones ambientales para cálculos
ASTM C1376 (5)Especificación estándar, requisitos ópticos y estéticos para recubrimientos aplicados en método pirolítico o magnetrónico

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
MARCELO TRENTO SRL
(0341) 4570929
http://www.marcelotrento.com.ar/
2440×3300 mm
e: 6 mm
Low-EARGENTINA
Rosario,
Provincia de
Santa Fé
VASA S.A
Brocanelli S.A
+54 9 351 156337183
http://www.brocanellisa.com.ar/
2440×3300 mm
e: 6 mm
Low-EARGENTINA
Cordoba
VASA S.A
Shenzhen Jimy Glass Co., Ltd2140×3300/2250×3300/
2140×1650/2440x1650mm
Low-ECHINA,
Shenzhen
JIMY GLASS
Nippon Sheet Glass Co., Ltd.2440×3300 mmPILKINGTON
Energy advantage®
CHILE
Stgo. de Chile
PILKINGTON

Bibliografía

 CULTURA TECTONICA Contexto histórico, social y económico
 (1) (2) Del sumidero de energía a la eficiencia energética: un recorrido por las tecnologías de ventana 1980: revestimientos de baja emisividad
1https://www.architectmagazine.com/technology/from-energy-sink-to-energy-efficient-a-walk-through-window-technologies_o
 (3)Caracterización y evaluación energética de los vidrios de fachada, pag 32
2https://upcommons.upc.edu/bitstream/handle/2117/103218/AldoVentura_TFM.pdf
 CIENCIA DE LOS MATERIALES- Definición
3http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen3/ciencia3/137/html/sec_4.html
 ¿Cómo y con qué se hace el vidrio?
4http://www.ivanvidrios.com.ar/low.htm
 Propiedades y características – Físico – química / Mecánica
 (1) (2) Propiedades generales del vidrio.
5http://www.vidrieriaespanola.com.ar/arq/Propiedades-generales-del-vidrio.php#:~:text=2500%20Kg%2Fm3%2C%20es%20la,por%20cada%20milimetro%20de%20espesor.
 Térmica, Óptica y Protección solar
 (3)(4)(5)(6) Catálogo de especificaciones técnicas: Low-e 4th Surface Commercial Technology Pilkington Energy Advantage™ Low-e pag 99 extraído de:
6https://www.pilkington.com/es-cl/cl/products/por-beneficio/aislacion-termico/pilkington-low-e#catlogos
 Normalización nacional y/o internacional para aplicaciones en construcción
 (1)(2)(3)(4)(5) Catálogo: Low-e 4th Surface Commercial Technology Pilkington Energy Advantage™ Low-e págs 96 al 101 extraído de:
7https://www.pilkington.com/es-cl/cl/products/por-beneficio/aislacion-termico/pilkington-low-e#catlogos

Perfiles autoportante de vidrio (Profilit ®)

Síntesis

El sistema de perfiles autoportantes de vidrio Profilit es una innovadora y económica alternativa a las técnicas convencionales de cerramiento con vidrio. El perfil de vidrio Profilit se fabrica con vidrio incoloro común recocido. Su faz externa es texturada mientras que su faz interna es lisa. Profilit se suministra en tiras estándar de 3000 y 5500 mm de largo en su tipo normal, 262 mm de ancho exterior, 41 mm de ala y 6 mm de espesor. La configuración en forma de “U” del vidrio Profilit aumenta notablemente su resistencia a los esfuerzos laterales permitiendo su instalación empleando elementos de gran longitud sin estructuras intermedias.

Contexto histórico, social y económico

Existen restos de vidrio que datan de unos 5.000 años a.C. Las primeras piezas hechas íntegramente de vidrio datan del 2.100 a.C., en las que se empleaba la técnica del moldeado. Hacia el año 200 a.C., los egipcios comenzaron a utilizar la caña del vidriero para soplar el vidrio. Más adelante, los romanos perfeccionaron la técnica empleando óxidos metálicos como colorantes, e impulsaron su uso para la conservación y almacenaje de determinados productos. En la Edad Media, el vidrio se convirtió en objeto de lujo para la decoración y destacó su uso como envase. En la Revolución Industrial S XIX, año 1800 el empleo del carbón para calentar los hornos y la introducción de las primeras máquinas de automatización de la producción, hizo posible el aumento de la producción haciendo más barata la fabricación. A comienzos del siglo XX se convirtió en una industria de masas, por medio de la instalación de hornos de fuego continuo y de los progresos realizados en el campo de la automatización de la producción. La evolución tecnológica de vidrio continúa hoy. Uno de los puntos fuertes del vidrio, que lo ha hecho uno de los materiales más empleados a lo largo de la historia es su reciclabilidad. Y es que el vidrio se recicla al 100% infinitas veces, manteniendo exactamente las mismas propiedades originales. El reciclaje de envases de vidrio tiene grandes beneficios ambientales, ya que evita la extracción de materias primas de la naturaleza, así como la emisión de CO2. Desde que se descubrió que la combinación de calor, sosa (carbonato sódico), cal y arena se formaba un material duro y transparente, el vidrio experimentó un proceso constante de desarrollo tecnológico. A partir del siglo XV el vidrio se empleó sobre todo para cubrir ventanas y demás aberturas. En las catedrales góticas representaba la luz divina y las escenas bíblicas representadas en los vidrios de colores instruían mediante imágenes a la gente analfabeta. Las ventanas de los siglos XV y XVI, realizadas con particiones, reflejan el desarrollo tecnológico del material ya que en esa época el vidrio se producía en tamaños pequeños. En el siglo XVIII los avances tecnológicos lograron que el vidrio se hiciera más transparente y de mayor tamaño. Las ventanas de guillotina reflejan estos avances y el creciente gusto por los interiores luminosos. En el siglo XIX y a través de los edificios comerciales, el vidrio alcanza un nuevo virtuosismo arquitectónico. Hasta la revolución industrial el tamaño de las ventanas y otras aberturas estaba restringido ya que las estructuras descansaban sobre muros de carga. Con la aparición de las estructuras enmarcadas, de hierro colado y luego en acero la utilización del vidrio en la construcción aumentó en forma espectacular. Estos avances estructurales coincidieron con una mejora en la calidad del vidrio. Algunas obras de Mies van der Rohe o Walter Gropius emplearon el vidrio redefiniendo la relación de los edificios con su entorno. En 1959 se produce un nuevo adelanto cuando Pilkington inventa el vidrio flotante, la fabricación de vidrio plano mediante el proceso Float consiste en una lámina de vidrio en estado de fusión que flota a lo largo de una superficie de estaño líquido.

Definición ciencia

La apariencia visual del sistema de perfiles Profilit provee líneas limpias e ininterrumpidas a una fachada, ya que la resistencia mecánica del perfil de vidrio elimina la necesidad de emplear una carpintería convencional para construir cerramientos de grandes dimensiones. Internamente ofrece una superficie vidriada, sin obstrucciones, sutilmente translúcida, que permite el máximo ingreso de luz natural difusa sin producir sombras. En aplicaciones donde los cerramientos son susceptibles de impacto humano, se puede utilizar el Profilit Templado. Los perfiles Profilit® K25 se pueden templar en longitudes de hasta de 3000 mm. Una vez templado, el perfil tiene mayor resistencia, admitiendo mayores alturas de instalación (en función de la carga de viento incidente), en caso de rotura, se rompe en pequeños fragmentos sin filo. El Sistema Profilit posee pocos componentes que pueden ser adaptados a cualquier diseño y edificio donde se desea privacidad visual, buena iluminación natural y un bajo costo de obra y de mantenimiento, una solución arquitectónica de vidriado basada en la resistencia estructural del perfil de vidrio en forma de U.

Procesamiento

La fabricación de vidrio plano mediante el proceso Float consiste en una lámina de vidrio en estado de fusión que flota a lo largo de una superficie de estaño líquido. En el baño “Float” la masa vítrea permanece confinada en un medio cuya atmósfera es químicamente controlada, a una temperatura lo suficientemente alta y durante un tiempo lo suficientemente prolongado para eliminar irregularidades y nivelar sus superficies hasta tornarlas planas, paralelas y brillantes, pulidas a fuego. Debido a que la superficie del estaño es plana, la del cristal así obtenido también lo es. La lámina es enfriada lentamente mientras sigue flotando sobre el estaño, hasta que con sus superficies lo suficientemente endurecidas, emerge del mismo y continua avanzando sobre rodillos, sin que éstos afecten su cara inferior.

Propiedades

Físico-química:

Resistencia ambiental:

ABCDEFG
La resistencia ambiental se clasifica como: buena (verde), regular (amarillo) mala (rojo).
Se aplica a cada uno de los parámetros (A: fuego / B: ácido / C: solventes orgánicos / D: agua / E:
ambiente salino / F: rayos UV / G: biodegradable).

Normas

NORMATÍTULO
CEProducto se ha fabricado de conformidad con las normas europeas para productos de vidrio.
IRAM 12595Vidrio plano de seguridad para la construcción. Práctica recomendada de seguridad para áreas vidriadas susceptibles de impacto humano. Información de la norma
IRAM 12843Vidrio plano para la construcción. Vidrio templado. Requisitos y métodos de ensayo. Información de la norma ICS:81.040.20 Vidrio en la construcción Organismo de estudio: Vidrio Plano para la Construcción Información de la publicación Norma Número de edición: 1 Fecha Publicación: 20/06/2008 Estado: Vigente.
NORMA ISO 9001-2000Horno de fusión y una línea de producción certificada
ISO 140-3Los valores de Reducción acústica de Pilkington Profilit TM están testados según la Normativa.

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
VASA https://www.vasa.com.ar Distribuye a todo el paísMedidas: 262mmx46mmx3000mm; 262mmx46mmx5000mm Espesor: 6mm Peso aprox. 5 Kg/ml.
Colores: Verde y azul
Profilit ®ArgentinaVASA TECHNOLOGY
VIIO
www.viio.com.ar
Distintos puntos de venta en Capital y gran buenos aires, córdoba y Santa fe
Medidas:
262mmx46mmx3000mm; 262mmx46mmx5000mm Espesor: 6mm Peso aprox. 5 Kg/ml.
Colores: Verde y azul.
Profilit ®ArgentinaVASA TECHNOLOGY
Casa Calello http://casacalello.com.ar Av. La Plata 2197 –
Quilmes Oeste
4250.0586
info@casacalello.com.ar casacalello@sinectis.com.ar
Profilit® se fabrica en dos anchos: K25 con 262 mm de ancho. K37 con 382 mm de ancho.
La altura del ala es de 41mm y un espesor de 6 mm, La altura del perfil es de 3 y 5 m
Profilit ®ArgentinaVASA TECHNOLOGY
GLASSIC® marca registrada de Templados Argentinos S.A https://www.e- glassic.com/profilit/
Grupo SICAVI SRL Luis María Drago 6241 | Munro | 1605 | Bs. As.
Tel. 011 4762 2757 Whatsapp 011 2284 8891 Email: info@sicavi.com.ar
Se suministra en tiras con una longitud estándar de 5000 mm y 3000 mm Las dimensiones son: 262 mm de ancho exterior, 41 mm de ala y 6 mm de espesor.Profilit ®ArgentinaVASA TECHNOLOGY

Bibliografía

1Luz y Arquitectura:
https://www.vasa.com.ar/wp-content/uploads/2016/06/profilit-u.pdf
2Glassic: Sistema Profilit
https://www.e-glassic.com/profilit/
3VIIO: Sistema de cerramiento autoportante
https://www.viio.com.ar/notes/profilit-sistema-de-cerramiento-autoportante/
4Vidrios Vitrolit: Profilit ventajas y aplicaciones
https://vitrolit.com/version_anterior/vitrolit-u-glass.html
5Vasa: Profilit
https://www.vasa.com.ar/product/cool-lite-knt/
6Todo aberturas: Sistemas vidriados
http://www.todoaberturas.com/profesionales/vidrios_sistemas_vidriados.php
7Uglass srl: Recomendaciones de instalación vitrolit
http://www.uglass.com.co/instalacion-en-divisiones-y-fachadas.html
8Vasa vidriería Argentina: Boletín informativo BI30 pág. n°25 _ 04/07/2006
https://www.vasa.com.ar/wp-
9content/uploads/2016/06/profilitautoparte.pdf
10Vasa. Profilit descripción
https://www.vasa.com.ar/product/226/
11Vidrios Castelar. Perfiles autoportantes
http://www.vidrioscastelarsa.com.ar/profilit.html
12Link Video Youtube
https://youtu.be/fZICZlWHo9s?list=PLGwBJmIY8JcFXHAhw8U8JQ-4_DnooDaf1
13Sistema Profilit
https://www.e-glassic.com/profilit/
14Perfil “U” de vidrio Profilit
http://www.brocanellisa.com.ar/PDF/08-PROFILIT.pdf
15Guía productos de arquitectura
https://www.lirquen.cl/site/archivos/Catalogo-Lirquen.pdf