Todas las entradas de Materialoteca

Grava basada en plástico reciclado

Síntesis

La grava basada en plástico reciclado está compuesta de polímeros plásticos de gran durabilidad y 100% reciclados [1] y se utiliza como agregado grueso liviano en hormigones y drenantes.
Aparece en el mercado buscando reemplazar un producto commodity en la construcción, la piedra partida o canto rodado. El uso principal que se le da a la grava está ligado a la ingeniería civil, como aislantes o en concretos, como áridos en mezclas de hormigones livianos no estructurales, hormigones premoldeados y en drenajes[2] ; también se la utiliza para proyectos de jardinería y paisajismo.
Para su composición se utilizan distintos plásticos ya sea de polietileno, poliéster o polipropileno con trazas de aluminio [3]. La comercialización del producto en Argentina se encuentra actualmente comprometida por el traslado de la fábrica la exterior y la dificultad con respecto a las importaciones.

Contexto histórico, social y económico

Cemex Ventures anunció una inversión en Arqlite SPC, una empresa que produce agregados reciclados ligeros a partir de residuos plásticos. La start-up, con sede en California, ha desarrollado una tecnología que permite procesar la mayoría de los desechos plásticos en grava artificial, evitando el uso de agregados de canteras naturales. [4]
La leca, o grava, plástica surgió en la provincia de Buenos Aires, Argentina en el 2015 con el propósito de que los plásticos no sean una carga para el planeta, sino que sea un recurso para un mundo más verde y sostenible generando hasta el momento 50 toneladas de plásticos en piedras que se utilizan para la construcción. Siendo así, se crean alternativas ecológicas a los plásticos convencionales, aquellos que las grandes empresas suelen rechazar por el sistema de reciclado, logrando de esta forma reciclar el 80% del restante de plásticos no utilizados por esas empresas, reduciendo la huella de carbono y abordando el problema global que general el desecho de plásticos. De esta forma se evita que los plásticos contaminen el medio ambiente y lleguen a vertederos naturales. Esta tecnología puede generar una solución a gran escala a un problema que cada día aumenta más. [5]
Este material, se suele utilizar en diferentes áreas de la construcción, como en ingeniería civil para mezcla de hormigones, lecho drenantes o base y sub-base de caminos. [6] También es utilizado en jardinería y paisajismo reemplazando la leca tradicional colocándolo al fondo de la maceta por debajo de la tierra logrando así, que al regar, la maceta no se tape. [7]
Lo destacable de este material también es que reemplaza la piedra mineral por ser tres veces más liviana (lo genera mayor facilidad del manejo del material), tener un gran aislamiento térmico y acústico y ser 100% reciclable, este motivo logra que, a nivel económico, tiene un costo menor y eso genera mayor consumo en la construcción.
La aparición de este material genera un cambio ecológico y duradero convirtiéndose en una opción ideal para quienes buscan reducir su impacto ambiental logrando así, que la empresa fundadora Argentina, se extienda por diferentes partes del mundo logrando llegar en 2020 a Estados Unidos, California.
La leca plástica es un material innovador creado en el año 2015 y comenzado a implementarse a mayor nivel a mediados del 2019 por distintas empresas debido al método de reciclado del 100% y cada vez a mayor escala por ser un producto de menor costo como se mencionaba anteriormente.
No tiene variedad de derivados utilizables en su fabricación más que los polímeros plásticos y trazas de aluminio ya que el plástico seleccionado se calienta y luego se funde. Estamos hablando de un material sustentable y ecológico el cual no genera problemas de explotación y se evita por completo una contaminación en el medio ambiente.
Arqlite sale al mercado como una solución al problema, no tan conocido, de los plásticos no reciclables. La empresa decide utilizar, en su totalidad, plásticos de una sola vida útil para fabricar sus productos, reduciendo la contaminación ambiental y los desechos plásticos no renovables. Es por esto que todos los plásticos que se utilizan en la fabricación de esta grava plástica, orientada a la construcción, son compuestos; utilizan laminados, aluminizados, y aquellos con alta carga de tinta, que se encuentran principalmente en packaging, y conforman el 70% de la basura plástica. [8]

Definición ciencia

La grava plástica es producida únicamente a partir de desechos plásticos post-industriales y restos de envases plásticos de todo tipo (flexibles, rígidos, metalizados)
Está compuesta de polietileno, poliéster y polipropileno con trazas de aluminio, plásticos mezclados que no son reciclables de la forma tradicional.
Además, debido a su composición, la grava arqlite logra un peso por metro cúbico de 980 kg menos que la piedra partida.

Procesamiento

Para obtener la grava plástica de arqlite, en primer lugar se deben separar y clasificar los plásticos desechados por otras entidades, que llegan a la fábrica. Una vez clasificados, se decide si se deben moler o enviar enteros a la máquina para su mezclado. La mezcla obtenida se funde a alta temperatura y se le inyectan burbujas de aire para integrar los distintos plásticos y transformarlos en uno nuevo integrado. [9]
Una vez obtenido el nuevo plástico, se generan las gravas por extrusión del material.

Propiedades

Normas

NormaTítulo
IRAM 13710Materiales plásticos reciclables. Clasificación y requisitos.
IRAM 29421Materiales y productos plásticos biodegradables y compostables. Requisitos para su valorización mediante compostaje.
IRAM 1505Agregados. Análisis granulométrico.
IRAM 29402Calidad del suelo. Pretratamiento de muestras para análisis físico-químicos.
IRAM 10509Mecánica de suelos. Clasificación de suelos, con propósitos ingenieriles.

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
SODIMACBolsa de 4 decimetros cúbicosSmart GravelArgentinaARQLITE
Vivero AntoniucciBolsa de 4 decimetros cúbicos,
25 decimetros cúbicos,
50 decimetros cúbicos
Leca PlásticaArgentinaARQLITE
ARQLITEBolsa de 4 decimetros cúbicos y
de 50 decimetros cúbicos
Smart GravelArgentinaARQLITE
Vivero el PotroBolsa de 5 litros y de 10 litrosGrava PlásticaArgentinaARQLITE

Bibliografía

(1) https://www.facebook.com/arqlite/videos/qu%C3%A9-es-la-leca-pl%C3%A1stica-arqlite-para-qu%C3%A9-se-usa-de-qu%C3%A9-est%C3%A1-hecha-beatplasticpol/1723839707923778/
(2) https://es.scribd.com/document/425592753/Ficha-te-cnica-Arqlite#
(3) https://viveroantoniucci.mitiendanube.com/productos/leca-plastica-arqlite/
(4) https://www.cemexventures.com/es/cemex-ventures-reciclara-plastico-para-producir-concreto-y-agregados-mediante-su-inversion-en-arqlite/
(5) https://arqlite.com/about-us/
(6) https://www.youtube.com/watch?v=rTPYxIq4vHk&ab_channel=MinisteriodeAmbienteyDesarrolloSostenible
(7) https://www.youtube.com/watch?v=IVanU5s0qIE
(8) https://www.youtube.com/watch?v=rTPYxIq4vHk
(9) https://www.facebook.com/watch/?v=371723590848595
(10) https://www.iram.org.ar/busqueda-avanzada-de-normas-iram/
(11) https://www.fceia.unr.edu.ar/materialescivil/Monografias/03.01.03-Hormigones%20con%20Agregados%20Livianos.PDF
(12) https://www.eoarq.com/single-post/2019/10/30/avances-construcion-10-2019
(13) https://biblioteca.uajms.edu.bo/biblioteca/opac_css/images/mimetype/unknown.gif
(14) https://www.nestleagustoconlavida.com/re/productos-biodegradables#:~:text=Se%20conocen%20como%20productos%20biodegradables,ya%20has%20escuchado%20este%20t%C3%A9rmino
(15) https://www.areatecnologia.com/materiales/materiales-ceramicos.html#:~:text=Los%20materiales%20cer%C3%A1micos%20generalmente%20tienen%20un%20alto%20punto%20de%20fusi%C3%B3n,buenos%20materiales%20de%20aislamiento%20t%C3%A9rmico
(16) https://www.youtube.com/watch?v=DY1B7AbAcLk
(17) https://www.instagram.com/arqlite_arg

Bloque de aserrín mineralizado

Síntesis

El bloque de Aserrín mineralizado es un material que ofrece una alternativa a los ladrillo comúnmente utilizado en las obras, este mismo surge de la mezcla de virutas de aserrín previamente mineralizadas (generalmente en base a una solución de silicato de sodio y otra de cloruro de calcio), cemento portland tipo 1 y (en este caso) carbonato de calcio.
El hecho de que el aserrín previamente pasara por la mineralización, genera que pierda todas las cualidades orgánicas, dejándola en estado inerte lo que le da su resistencia, mesclando esto con el cemento y el aditivo mineral se consigue un mortero con el cual se realizan los bloques en la forma deseada, los cuales si bien poseen una alta resistencia son fáciles de cortar, perforar o clavar en ellos.
Actualmente gran parte de los fabricantes de este material, los realizan siguiendo la tecnología ICF (Isulated Concrete Form) en el cual el bloque en si funciona como encofrado para una estructura de hormigón interna monolítica, debido a esto el bloque simplemente debe ser apilado en conjunto sin necesidad de morteros para la unión entre hiladas, permitiendo así una amplia variedad de usos ya sean estructuras portantes o incluso tabiques.

Contexto histórico, social y económico

Si bien la historia nos remarcan tanto al aserrín como al concreto como elementos presentes hace cientos de años, el acto de combinar esto elementos primeramente contrarios y altamente distintos entre sí, se puede estimar en la primera parte del siglo XX en Estados Unidos, debido al alto precio de los combustibles y la disminución de los ingresos impulso la búsqueda de nuevos materiales de alto aislamiento térmico, resistencia y baja combustibilidad, sin embargo consiguió su nombre de bloque de “Arbolit” más o menos por los años 60, cuando se comenzó a normalizar en la URSS.
Si bien el proceso de elaboración puede ser tedioso y largo, eran relativamente pocos los insumos que pide para la producción, en el pasado el máximo de resistencia de hormigón que se podía conseguír era el cemento portland M400 y el principal mineralizador consistía en sulfato de aluminio, a su vez el bloque se le solía incluir cal o arcilla para reducir el aglutinante, lo que derivaba en una reducción de la dureza del bloque final, debido a esto consistía en una masa semiseca la cual no fluía en los moldes y a los cuales se debía comprimir constantemente para obtener bloques macizos uniformes, mientras que hoy en día se mineraliza el aserrín comúnmente con silicato de sodio y cloruro de calcio aparte del sulfato de aluminio, del mismo modo mientras que al inicio se usaban bloques macizos, normalmente de 20cmx30cmx50cm los cuales requerían mortero para unirlos, dificultando de esta forma el hecho de realizar instalaciones de cualquier tipo a través de los mismos, mientras que en general hoy día, el bloque se realiza utilizando la tecnología de bloque ICF, permitiendo así que el bloque funcione como encofrado del hormigón, ahorrándose de este modo tener que utilizar el mortero entre hiladas, mientras que a su vez lo aísla del exterior permitiendo así que sufra menos las aversiones del ambiente, al mismo tiempo que aumenta capacidades como la del aislamiento térmico y acústico por ejemplo, tomando también en cuenta de que el bloque de aserrín ICF es bastante maleable y fácil trabajar sobre el mismo, permitiendo así poder cortarlo en formas deseadas, agujerearlo a necesidad u todo lo que sea necesario realizando todas las conexiones queridas previas al hormigonado interno de la estructura, dando así una mayor comodidad al momento de trabajar el bloque en comparación a las versiones originales.
En otro aspecto el bloque de aserrín fue pensado para aprovechar elementos de descarte de la industria maderera, mientras a su vez evitara el producir residuos tóxicos durante su producción, sin embargo se puede entender que al utilizar mayormente hasta un 80% de descarte de madera, si la producción superara la cantidad de residuo disponible, se requeriría comenzar a producir madera o desforestar específicamente para la producción de los bloques, lo que podría afectar al aspecto ambiental de la zona.

Definición ciencia

El bloque de aserrín mineralizado, se realiza con una de cementicios, residuos de madera de conífera mineralizada normalmente en una solución de silicato de sodio al 5% y cloruro de calcio a los 3% acompañados de aditivos minerales como pueden ser el carbonato de calcio (CaCo³), todos estos elementos una vez mezclados generan una pasta espesa la cual pasa a ponerse en moldes donde reciben presión constante para rellenar de una forma uniforme dicho elemento.

Procesamiento

Para la elaboración del bloque se requiere aserrín de coníferas proveniente de los aserraderos de la industria maderera que ese encuentran por la zona, cemento portland tipo 1 con mezcla de yeso y Clinker, comprado a mayoristas por pallet al igual que los aditivos minerales y el agua aplicada la cual proviene de perforación de pozo propia,

Propiedades

Normas

NormaTítulo
IRAM N°11588Resistencia a la compresión
IRAM N°11595Resistencia impacto duro
IRAM N°11596Resistencia al impacto blando
IRAM N°11585Resistencia cargas verticales
IRAM N°11950Resistencia al fuego
IRAN N° 4044Aislación acústica
IRAN N°1735Permeabilidad o permeancia al vapor

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
Simacon 
Telf: +54-3751-317581
Mail: simconicf@gmail.com
info@simacon.com.ar
www.simacon.com.ar
Pallets de hasta 40 bloques c/uModulo E 18-10 ICFArgentinaSimacon
ISOTEX® Blocco Cassero in Legno Cemento
Telf: +39 0522 9632
Mail: info@blocchiisotex.it
HTTPS://WWW.BLOCCHIISOTEX.COM
 Cantidad Requerida    (Menor a pallet)
Pallets de hasta 35 bloques c/u
Bloques: 
-HD 20
-HD 25/16
-HB 30/16
-HB 44/15-2
-HD III 30/7 con grafito
-HD III 33/10 con grafito
-HD III 38/14 con grafito
-HD III 44/10 con grafito
ItaliaIsotex®

Bibliografía

(1) Ramos Laura. Informe Técnico.
Revisado el 18 de abril de 2023.
 https://drive.google.com/file/d/1Vj9hecBiSCI4Bj1y–o0eR387H91EpOe/view?usp=share_link
(2) Niell Javier, Velázquez Silvia Beatriz, Corso María Eugenia. Prueba Técnica de resistencia al fuego.
Revisado el 19 de abril de 2023.
https://drive.google.com/file/d/1caMYkGTYARLMma15qcUP6erz65sToW_w/view?usp=share_link
(3) Simacon. Guía Técnica.
Revisado el 18 de abril.
https://drive.google.com/file/d/1SuAHVuwnD_BJQef5tyUp1UQ1nqwqwBy1/view?usp=share_link
(4) Isotex: https://drive.google.com/file/d/1mnpqIiUDeiGNQ5uZwsHgd95fwbF5juCU/view?usp=share_link
(5) Composición de bloque original: https://esn-d.techinfus.com/blok-haus/iz-cementa-i-opilok/
(6) Orígenes: https://paulturner-mitchell.com/es/13398-arbolit-istoriya-arbolita-oblast-primeneniya-arbolita.html
(7) Datos generales: https://optolov.ru/es/types-of-potted-plants/chto-takoe-cementno-struzhechnye-stroitelnye-bloki-arbolitovye.html

BioBased Tiles®

Síntesis

BioBasedTiles® es una baldosa compuesta en un 85% de residuos varios – como desechos de la producción de granito – y otro 15% de Biocement®(1), un aglutinante de carbonato de calcio cuyo proceso de producción es neutro en emisiones de CO₂(2), que resulta en un producto similar a la piedra caliza. Puede utilizarse tanto en interior como en exterior, como revestimiento de muros o como terminación de pisos transitables y no transitables. Cada pieza se moldea y cura por 72 hs a temperatura ambiente, por el momento en una única planta de fabricación en Amsterdam, puede adquirirse texturada o pulida, y pueden cortarse según necesidad una vez en obra. Se comercializa en listones, generalmente de 40cm x 19cm y de 2cm o 4cm de espesor, pero aún no ha llegado al mercado latinoamericano, por lo cual no se comercializa en Argentina.

Contexto histórico, social y económico

BioBased Tiles® es el tercer producto lanzado al mercado por la compañía StoneCycling, fundada en Amsterdam por Tom Van Soest y Ward Massa en 2012. Luego de explorar la reutilización de materiales de descarte de obra en sus productos anteriores, el objetivo de BioBased Tiles® fue ahondar en la reducción del consumo energético, sin sacrificar rendimiento mecánico. A diferencia de sus predecesores, que seguían requiriendo el uso de cemento Portland como aglutinante principal en su mezcla antes de verterse en molde, estos nuevos mosaicos utilizan Biocement®, que combina carbono y calcio para producir un material similar a la piedra caliza, sin el uso de altas temperaturas ni combustibles fósiles en el proceso(2), en su lugar asemejándose a la formación del coral(5).
Durante su tiempo en la Academia de Diseño de Eindhoven, Países Bajos; e impulsado por el deseo de darle uso al desperdicio de obra, Tom Van Soest comenzó a experimentar con la reutilización de material de descarte – cerámicas, mosaicos, materiales aislantes, bachas. De esta manera, y como un chef en la cocina, probó recetas y distintos grados de composiciones en sus productos resultantes. Para su graduación, la crisis económica de 2008 llegaba a Países Bajos y tenía efectos visibles en el paisaje de los bienes raíces, que con la caída de docenas de pequeñas y grandes compañías, dejó varios lotes y espacios vacantes que debían ser demolidos(7). La construcción y demolición son las principales afluentes de residuos en Países Bajos y todo Europa, alcanzando entre 30% y 40% del porcentaje total(7). Tanto Van Soest como Massa investigaron a dónde se dirigían esos residuos, hasta el momento escasamente reutilizados en pavimentación, y concluyeron en que se presentaba una gran oportunidad para una nueva solución, que no implicara tanto descarte ni involucrara la explotación de recursos naturales. Para el 2012, y con su amigo Ward Massa, fundaron StoneCycling.
Para poder reducir el impacto de la producción, aprovechar el residuo que tanto notaban y limitar los gastos de transporte, establecieron vínculos con compañías sanitarias urbanas para poder capitalizar los descartes locales. Sus primeros productos WasteBasedBricks® y WasteBasedSlips® se basaron en recetas que Van Soest había probado anteriormente, 60% de su composición siendo residuo mineral y demostrando un 25% de reducción de consumo energético en su producción al compararlo con el ladrillo común tradicional(4), además de ser más resistentes a la compresión y absorber menos agua que los mismos. Pero la fabricación de los mismos seguía requiriendo cemento tradicional como aglutinante de los materiales reutilizados, ya pulverizados y a la espera de un ligante. En su lugar, se asociaron con BioMason, empresa estadounidense que experimenta con la producción de cemento mediante la combinación de carbono y calcio para producir piedra caliza; el proceso inverso a la producción de cemento portland, que libera al carbono de la piedra caliza con el uso de sílice y altas temperaturas para reducirlo a partículas aglutinantes, emitiendo dióxido de carbono (CO₂) en el proceso, además de ser partículas contaminantes hídricas que en su producción pueden producir silicosis en el personal de la planta. Este cambio es fundamental, y en combinación con la reutilización de materiales que ya han entrado en circulación, indica también que no se necesita la explotación de ningún recurso natural vírgen para producir los mosaicos.
La utilización de los mosaicos BioBased sin embargo, no es una alternativa económica en comparación a una tejuela calcárea símil ladrillo, más tradicional. Con un costo de €70 por m2 y una compra mínima de 1000m2 para proyectos fuera de Europa(8), su aplicación parece ser más bien en programas institucionales o apuntada a grandes desarrollos(9), sin calcular los gastos de envío desde Amsterdam.
Reutilizable en un 100%(9), pudiendo convertirse en materia prima de su propia producción como residuo a pulverizar y reinsertarse nuevamente en un nuevo ciclo de vida, quizás su costo se reduzca una vez propagada su producción a otras partes del mundo.

Definición ciencia

BioBasedTiles® es una baldosa o mosaico compuesto entre 80% a 90% de granito – material de descarte en la producción de granito y descarte de obra, derivado geológicamente – y otro 10% a 20% de Biocement®, un aglutinante de carbonato de calcio, derivado biológica y geológicamente(12).

Procesamiento

BioBasedTiles® se fabrica a partir de agregados de distintos residuos, en su gran mayoría el desperdicio en polvo de la producción de granito. En el caso de residuos de obra estos primero se secan y muelen industrialmente, para pulverizarlos. Luego se mezclan los agregados secos y ya pulverizados, junto con un aglutinante de Biocement® de carbonato de calcio, lo que da como resultado unidades modulares con una o más caras con terminación lisa. Se forman por compactación vibratoria de su mezcla semi seca y se curan a temperatura ambiente, alcanzando su máxima resistencia en menos de tres días(11). Se adquiere en las siguientes medidas y espesores: 22,5cm x 19cm x 5,2cm | 40cm x 19cm x 4cm | 40cm x 19cm x 2cm | 60cm x 10cm x 3cm | 60cm x 10cm x 6cm.

Propiedades

Normas

NormaTítulo
ASTM C1731-21Especificación estándar para baldosas cementicias o de hormigón
ASTM C779M-19Especificación estándar para resistencia a la abrasión de superficies horizontales de hormigón
ASTM C126-22Especificación estándar para losetas de revestimiento y unidades de mampostería sólida
ASTM C131/C131M-20Resistencia a degradación de agregados pequeños por abrasión e impacto
ASTM E648Reacción y respuesta al fuego
ASTM E662Evolución, composición y densidad del humo ante incendio

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
StoneCycling
Karperweg 41
1075 LB Amsterdam
+31 088-777-4200
ward@stonecycling.com
Rectificado, y/o pulido de:
22,5cm x 19cm x 5,2cm 
40cm x 19cm x 4cm 
40cm x 19cm x 2cm
60cm x 10cm x 3cm
60cm x 10cm x 6cm
BioBased TilePaíses BajosStoneCycling
BioMason
2 Triangle Dr
Durham, NC 27709
+1 802-466-2766
hello@biomason.com
Rectificado, y/o pulido de:
40cm x 20cm x 1,9cm 
40cm x 4cm x 1,9cm
BiolithCarolina del Norte, Estados UnidosBioMason
Armstrong Flooring
+1 855-243-2521
support@ahfproducts.com
Rectificado, pulido y laqueado de:
30,5cm x 30,5cm x 3,2cm
30,5cm x 61cm x 3,2cm
BioBased TilePennsylvania, Estados UnidosArmstrong Flooring

Bibliografía

(1) Mayor instalación de BioBasedTiles en laboratorios Helix, Dinamarca https://www.stonecycling.com/projects/biobasedtiles-helix-lab-denmark/
(2) BioBased Tiles®, Material District 
 https://materialdistrict.com/material/biobasedtile/
(3) Fundador Tom van Soest deja StoneCycling para lanzar nuevo estudio de diseño
https://www.stonecycling.com/news/new-design-studio/
(4) Esta startup holandesa está haciendo ladrillos a partir de desechos industriales
https://www.smithsonianmag.com/innovation/this-dutch-startup-making-bricks-from-industrial-waste-180959893/
(5) Cómo se forman los arrecifes de coral
https://coral.org/es/coral-reefs-101/how-reefs-are-made/#:~:text=Los%20arrecifes%20de%20coral%20est%C3%A1n,de%20mar%2C%20no%20producen%20arrecifes.
(6) StoneCycling
https://golden.com/wiki/StoneCycling-8APKBAD
(7) Circular conversations, StoneCycling
https://circularconversations.com/pioneers/stone-cycling
(8) Checkout, StoneCycling
https://www.stonecycling.com/sample-request/checkout-physical/
(9) Proyectos, StoneCycling
https://www.stonecycling.com/projects/
(10) Biomason®, etiqueta de producto de Declare [REVISADO 1/05/2023, Explorador: Google Chrome]
https://biomason.com/wp-content/uploads/2023/04/AutomationLabel5800d6d1-8f57-4e24-bb54-1dc745fd3930-3-scaled.jpg
(11) BioBased Tile®, ficha técnica [REVISADO 1/05/2023, Explorador: Google Chrome]
https://www.stonecycling.com/app/uploads/2022/05/BBT-Data-Sheet-June-2022.pdf
(12) BioLith®, Health Product Declaration [REVISADO 1/05/2023, Explorador: Google Chrome]
https://biomason.com/wp-content/uploads/2022/04/bioLITH_tile_HPD.pdf
(13) BioLith®, ficha técnica [REVISADO 1/05/2023, Explorador: Google Chrome]
https://biomason.com/wp-content/uploads/2023/03/Biolith%C2%AE-Product-Catalog.pdf
(14) BioBasedTile ™, Environmental  Product Declaration [REVISADO 1/05/2023, Explorador: Google Chrome]
https://drive.google.com/drive/folders/1Aj3btcm1u5599uuXDcqc_smPR-mmz-zr
(15) BioLith®, Performance Declaration [REVISADO 1/05/2023, Explorador: Google Chrome]
https://biomason.com/wp-content/uploads/2022/10/Biomason.DK-Biolith%C2%AE-Tile-DoP-DK-Manufacturing.pdf
(16) BioBased Tile®, guía de aplicación horizontal [REVISADO 1/05/2023, Explorador: Google Chrome]
https://www.stonecycling.com/app/uploads/2022/05/BBT-Application-Guide-for-Horizontal-Use-June-2022.pdf
(17) BioBased Tile®, guía de aplicación vertical [REVISADO 1/05/2023, Explorador: Google Chrome]
https://www.stonecycling.com/app/uploads/2022/05/BBT-Application-Guide-for-Vertical-Use-June-2022.pdf
(18) Resistencia ambiental:
Consideramos que el desempeño ambiental tiende a un rendimiento medio, constituyéndose como un material durable pero muy poroso, análogo al bloque cementicio hueco o a la misma piedra caliza. Su terminación pulida tiene una porosidad disminuída respecto de la terminación rugosa, más propensa a la proliferación de microorganismos (y consecuentes “manchas”), absorción y retención de humedad – causando con el tiempo erosión, desgranamiento y percudiendo en definitiva el mosaico y sus juntas. Asimismo, las propias fichas técnicas del material(11)(16)(17) indican que la manutención y limpieza debe hacerse con fluidos de pH neutro, sin sustancias ácidas, evitando fluidos cítricos, vinagres o ácido muriático ya que éstos pueden corroer la composición del mosaico, especialmente su componente de biocemento, y opacar la terminación de la superficie en caso de tratarse del material pulido.

Aislante de Aerogel

Síntesis

El aerogel tradicional es muy frágil para la aplicación en el “mundo real” ya que, sus partículas apenas están unidas (si se ve en un microscopio) lo que crea esa fragilidad en él. Sin embargo, con el avance de la tecnología, las empresas están creando aerogeles combinados con otros materiales, lo cual realza e intensifica algunas de sus características más importantes, y además, le da otras nuevas propiedades.
La producción de aerogeles a escala industrial sigue siendo limitada y la mayoría de aerogeles a la venta están fabricados a partir de sílice.. Además, los aerogeles híbridos y orgánicos (hechos a partir de biopolímeros como la celulosa) que combinan dos o más componentes distintos, como el alginato y la pectina, no han llegado a introducirse en el mercado de manera significativa.
Formatos típicos de venta en Argentina: Rollos Rollos de 57 in76m- 57 in46m de largo / Pyrogel XTE/Pyrogel XTF/Cryogel Z.

Contexto histórico, social y económico

(10) El primer Aerogel de sílice fue creado por Samuel Stephens Kistler en 1931, como resultado de una apuesta con Charles Learned sobre quién podría reemplazar el líquido dentro de un frasco de mermelada sin causar que la estructura interna se derrumbara. Esta particular creación trajo consigo el descubrimiento de poder generar una estructura reticulada de un polímero en un medio acuoso. Las propiedades novedosas que trajo consigo fueron una baja densidad (3 mg/cm3) de naturaleza altamente porosa, una propagación del sonido inferior a 100 m/s y una conductividad térmica extremadamente baja (0,03 W· m /m 2 · K hasta 0,004 W·m/m 2 ·K), lo que le confiere notables propiedades aislantes. Al inicio de su creación e implementación, la NASA ha introducido al aerogel en la disciplina aeroespacial como aislante para sus trajes espaciales y transbordadores. Con ayuda del auge y crecimiento de la nanotecnología se logró desarrollar una series de aerogeles basados ​​en otras estructuras: óxido de aluminio, estaño, óxidos metálicos, cromo, carbono, nanotubos de carbono, nanodiamantes. La fabricación comercial de aerogel en formato de mantas o placas comenzó alrededor del año 2000. Una manta de aerogel es un compuesto de aerogel de sílice y un refuerzo fibroso que convierte el aerogel quebradizo en un material duradero y flexible. Las propiedades mecánicas y térmicas del producto pueden variar según la elección de las fibras de refuerzo, la matriz de aerogel y los aditivos de opacificación incluidos en el material compuesto. El desarrollo del material aportó significativamente a la innovación en nanotecnología, ya que con este y la creación de nuevos microscopios a grado nanomolecular se logró la utilización de otros compuestos para crear el aerogel pero logrando mantener sus virtudes más sobresalientes. Actualmente se puede utilizar en fachadas de oficinas para mantener un cierto equilibrio térmico, chalecos antibalas, paragolpes ya que amortigua un 89% del impacto que recibe y tuberías aisladas para plantas químicas. Como se mencionó anteriormente el aerogel cuenta con más de un área de implementación y aplicación. Hoy en día se está investigando su uso para el área de la salud. El un aislante aerogel se considera costoso en la construcción con respecto a los demás aislantes, el cual está en un valor de entre 110 a 120 euros el m2 por 10mm de espesor. El material base utilizado en el aerogel se encuentra en abundancia en las piedras, el suelo y la arena. No se logró encontrar utilidad alguna a los derivados que se producen en su fabricación. Al ser el sílice un material presente en gran porcentaje en la naturaleza su explotación se ve reflejada en la baja capacidad que comienza a tener el suelo para contrarrestar los gases de efecto invernadero. Al dia de hoy solamente se encuentra disponible en Argentina mediante un importador. En cambio en Sur America se distribuye directamente mediante una sede de Cabot Brasil Industria e Comercio Ltda. ubicada en Brasil.

Definición ciencia

El aerogel /gel helado/ humo blanco es un gel ligero y poroso, un material coloidal (sistema conformado por dos o más fases, una fluida (líquido o gas), gas, aproximadamente un 97%, y otra fase dispersa que se encuentra en menor proporción de partículas sólidas de aproximadamente un 3%. Es un polímero siete veces más ligero que cualquier otro plástico.Como dice su nombre, está compuesto de nanopartículas de gel y tiene poros llenos de aire, lo cual caracteriza la ligereza de este.

Procesamiento

Para conseguir un aerogel, lo que se tiene que hacer es, teniendo una base de gel ( el ejemplo más usado es el de la gelatina comestible) extraer del gel la sustancia líquida e introducir aire a esas moléculas líquidas, a esto se le llamaría “secado supercrítico”.
El agua se cambia por alcohol y luego el gel se coloca en un recipiente de alta presión llamado “autoclave”, donde al calentarla al punto de alta temperatura y presión, se llamará punto crítico del líquido, transformará ese líquido en semilíquido y semi-gaseoso llamado “fluido supercrítico”. Ahora ya no habría una distinción entre lo líquido y gaseoso, esas moléculas ya no se juntan unas con otras, cuando se despresuriza el recipiente, ese 1% de masa del gel se mantiene intacto solo que donde antes había poros con líquido, ahora hay gas y ahora esa estructura sólida, los nano poros sólidos se llamarían aerogel.

Propiedades

Normas

NormaTítulo
ASTM C1728-22Especificación estándar para aislamiento de aerogel flexible.
ASTM C356-22Método de prueba estándar para la contracción lineal de aislamiento térmico de alta temperatura preformado sujeto a calor de remojo.
 ASTM C411-19Método de prueba estándar para el rendimiento de superficie caliente del aislamiento térmico de alta temperatura.
ASTM C411-19Método de prueba estándar para el rendimiento de superficie caliente del aislamiento térmico de alta temperatura.
ASTM C447-15Práctica Estándar para Estimar la Temperatura Máxima de Uso de Aislantes Térmicos.
ASTM C795-08Especificación estándar para aislamiento térmico para uso en contacto con acero inoxidable austenítico.
ASTM C1101/C1101M-06Métodos de prueba estándar para clasificar la flexibilidad o rigidez del aislamiento de mantas y placas de fibra mineral.
ASTM C1104/C1104M-19Método de prueba estándar para determinar la absorción de vapor de agua del aislamiento de fibra mineral sin revestimiento.
ASTM C1338-19Método de prueba estándar para determinar la resistencia a hongos de materiales aislantes y revestimientos.
ASTM C1763-20Método de prueba estándar para la absorción de agua por inmersión de materiales de aislamiento térmico.
ISO 15665Acústica — Aislamiento acústico para tuberías, válvulas y bridas.
ISO 22482:2021Productos de aislamiento térmico. Manta de aerogel para edificios. Especificación.

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
*Distribuidor Nacional*
(1) Estudio Baratelli
Dirección: 12 de Octubre 53- Piso 4- Oficina 1, Bahía Blanca. Argentina
Teléfono: 0291-4304212
Página web:
contacto@estudiobaratelli.com
-Pyrogel XTE: 
Rollos de 5mm (0.20 pulg) por 1,500 ft2
Rollos de 10 mm(0.40 pulg) por 850 ft2
-Pyrogel XTF:
  – Rollos de 60 in
(1500 mm) de ancho por 155 ft (47 m) de largo
-Cryogel Z:
  – Rollos de 57 in 
(1,450 mm) de ancho por 250 ft (76 m) de largo
  – Rollos de 57 in 
(1,450 mm)de ancho por 150 ft (46 m) de largo
-Pyrogel XTE
-Pyrogel XTF
-Cryogel Z
Estados UnidosAspen Aerogels
(2)General Insulation Company, Inc.
Dirección corporativa:
278 Mystic Ave, Suite 209, Medford, MA, 02155, EE. UU.
Teléfono: (781) 391-2070
Pagina web:
https://www.generalinsulation.com/?lang=es
-Pyrogel XTE: 
Rollos de 5mm (0.20 pulg) por 1,500 ft2
Rollos de 10 mm(0.40 pulg) por 850 ft2
-Pyrogel XTF:
  – Rollos de 60 in
(1500 mm) de ancho por 155 ft (47 m) de largo
-Cryogel Z:
  – Rollos de 57 in 
(1,450 mm) de ancho por 250 ft (76 m) de largo
  – Rollos de 57 in 
(1,450 mm)de ancho por 150 ft (46 m) de largo
-Pyrogel XTF
-Pyrogel HPS
-Pyrogel XTE
-Cryogel Z
Estados UnidosAspen Aerogels
(3)Aspen Aerogels
NORTHBOROUGH, MA — SEDE CENTRAL
30 Forbes Road, Edificio B
Northborough, MA 01532 
EE. UU.
Teléfono: 1-888-481-5058
Teléfono: 1-508-691-1111
Pagina web:
https://www.aerogel.com/
-Rollo de 5 mm (0,2 pulg) de 139m2 (1,500 pies2 )
-Rollos de 10 mm 
(0,4 pulg) de 79m2      
(850 pies2 )
-Pyrogel XTE
-Pyrogel HPS
-Pyrogel XTF
-Cryogel Z
Estados UnidosAspen Aerogels
(4)Cabot Brasil Industria e Comercio Ltda.
Rua do Paraiso 148 – 5 andar
Sao Paulo 04103-000
Brasil
Teléfono: +55 11 2144 6429
Fax: +55 11 3289 8671
Página web:
https://www.cabotcorp.com.br/
-Espesor 2.5 mm
Ancho 75.7 cm
Longitud de 160 m
-Espesor 3.5 mm
Ancho 76.2 cm
Longitud de 120 m
-Espesor 6.0 mm 
Ancho 76.2 cm
Longitud de 85 m
-Espesor 8.0 mm 
Ancho 76.2 cm
Longitud de 110 m
-Thermal Wrap™ TW250
-Thermal Wrap™ TW350
-Thermal Wrap™ TW600
-Thermal Wrap™ TW800
Estados UnidosCabot Corporation

Bibliografía

Baratelli, Estudio. Ingenieria, Proyectos, Servicios – Revisada el 05/05/2023
Obtenida el 10 de Abril de 2023, de
(1) https://estudiobaratelli.com/aerogel.html
Insulation Company, INC  – Revisada el 05/05/2023
Obtenida el 10 de Abril de 2023, de
(2) https://www.generalinsulation.com/products/mechanical-insulation-products/insulation-types/aerogel-commercial-insulation/pyrogel/?lang=es
Aspen Aerogels  – Revisada el 05/05/2023
Obtenida el 10 de Abril de 2023, de
(3)https://www.aerogel.com/contact/
Cabot Corporation  – Revisada el 05/05/2023
Obtenida el 10 de Abril de 2023, de
(4)https://www.cabotcorp.com/company/contact-us#customer-service
Aerogeles, materiales super aislantes térmicos  – Revisada el 05/05/2023
Artículo realizado por Eunate Goiti, Senior Researcher at Tecnalia
Fecha de publicación: 12 de junio del 2020
(5)https://www.caloryfrio.com/ahorro-energia/aislamiento-termico/aerogeles-materiales-superaislantes-termicos.html
Aerogel Technologies  – Revisada el 05/05/2023
Obtenida el 10 de Abril de 2023, de
(6) http://www.aerogeltechnologies.com
Stephen Steiner  – Revisada el 05/05/2023
Fecha de publicación: 20 de enero del 2018
(7) http://www.aerogel.org
NanoHybrids  – Revisada el 05/05/2023
Fecha de publicación: 30 de Abril del 2019
(8) https://cordis.europa.eu/article/id/247398-next-generation-aerogels-offer-industrial-solutions/es
Trevor English  – Revisada el 05/05/2023
Fecha de publicación: 14 de Enerol del 2016
(9) https://interestingengineering.com/science/airloy-the-new-super-material
New World Encyclopedia  – Revisada el 05/05/2023
Aerogel
Obtenida el 18 de Abril de 2023, de
(10)https://www.newworldencyclopedia.org/entry/Aerogel

Aislante Rootman

Síntesis

El aislante natural Rootman está hecho a base de raíces de semillas de grano de avena o cebada que conforman un colchón radicular que no posee modificaciones genéticas ni aditivos químicos. Es 100% natural y biodegradable, no consume mucha energía ni agua, se puede cultivar con cualquier tipo de clima y demora entre 10 y 15 días. Su producción se desarrolla dentro de cámaras aisladas donde se cultivan las semillas dentro de bandejas que definen el espesor requerido. Este colchón radicular se usa como aislante térmico y acústico y permeabilidad al vapor en muros, suelos y techos. Posee propiedades de altísima resistencia al fuego además de las ya mencionadas.La aislación Rootman está disponible en dos tamaños, 60 x 60 cm y 60 x 40 cm, y en dos espesores, 45-55 mm y 70-80 mm. Es un producto de origen chileno.

Contexto histórico, social y económico

El aislante natural Rootman, es un material originario de Chile. Sus inventores son: Roberto Garcia (Filósofo y Agrónomo), Rodrigo Cancino (Doctor en Química, MBA, Post Doctorado en Biomateriales y Nanomateriales) y Juan Carlos Beaumont (Ingeniero Civil Mecánico, Magíster en Innovación Aplicada). Desarrollaron un material sustentable y completamente biodegradable con la novedad de ser resistente al fuego en un F-90, es decir que soporta más de 90 minutos expuesto a una llama directa constante sin que se expanda. Lo presentan como innovación y solución para la industria de la construcción, agrícola y biotecnología.
El producto surge en una provincia al sur de Chile, como una posible solución a la mitigación del cambio climático, al ahorro de energía y agua usando un material 100% natural.
El propósito de este material era ser un aislante duradero amigable con el ambiente. Se descubrió que además de ser aislante térmico, acústico y permeable al vapor, poseía uno de los porcentajes más altos en la industria en resistencia al fuego. Debido a este descubrimiento hoy en día se utiliza además de como una opción sustentable en materiales de aislamiento, como protección y medida de seguridad en las zonas afectadas por los incendios forestales.
Es un material relativamente nuevo en la industria, creado en 2017. Al día de hoy está posicionado como el mejor aislante térmico natural y entre los mejores del mercado por sus propiedades, tan solo siendo superado por el poliuretano expandido.
No es un material muy costoso, ronda entre los $6.000 y $7.500 pesos chilenos por metro cuadrado.
Tiene un impacto ambiental 0% negativo ya que en su producción no se usa ningún tipo de químico, no deja huella de carbono, no consume un alto grado de energía ni agua, es durable y completamente biodegradable. Incluso sus “residuos” como el material en sí pueden ser usados como fertilizante y abono para los suelos.
Su única desventaja es que no poseen una producción masiva, debido a que la empresa no dispone de un espacio más grande para llevarla a cabo. Aunque se plantea a futuro expandirse en franquicias en distintos países que deseen la opción sustentable, con la matrícula del procedimiento para la creación autorizada del material, el cual no tendría ningún tipo de limitación porque puede producirse bajo cualquier condición climática.
A la horade su instalación y utilización en obras no se requiere de ningún tipo de capacitación y puede ser aplicado en pisos, muros exteriores e interiores y techos.

Definición ciencia

El Aislante natural Rootman, es un colchón radicular, conformado por raíces a base de producción de gramíneas como avena o cebada en invernaderos con cámaras aisladas donde se cultivan en bandejas de un espesor de 45-55 mm y 70-80 mm. Poseen capacidades certificadas de aislación térmica, acústica, resistencia al fuego y permeabilidad al vapor. El aislante se encuentra conformado de un 80% de raíces y 20% foliar.

Procesamiento

El proceso de creación del Aislante Rootman dura de 8 a 12 días, entre que se siembra, se cosecha y se seca.
En la etapa 1 de siembra: se hace una mezcla (que no contiene componentes químicos) la cual se mete en una cámara de temperatura y humedad controlada, por un lapso de 10 días
En la etapa 2 de cosecha: se retira de la cámara aislante el colchón ya formado y pasa a una cámara de secado por 2 días.
En la etapa 3 embolsado: se retira el colchón ya listo de la cámara de secado, se mete en unos envoltorios de papel kraft y está listo para colocarse

Propiedades

Normas

NormaTítulo
INN-NCh 850/2008Aislación térmica- Determinación de resistencia térmica en estado estacionario y propiedades relacionadas- Aparato de placa caliente de guarda.
INN-NCh 935/1.Of 97Prevención de incendios en edificio- ensayo de resistencia al fuego- parte 1: elementos de construcción en general
INN-NCh 2457 Of. 2014Prestaciones higrotérmicas de los productos y materiales para edificios- determinaciones de las propiedades de transmisión de vapor de agua
INN NCh 2786. Of. 2003 (ISO 140-3:1995)Acústica- medición de aislación acústica en construcciones y elementos de construcción- mediciones en laboratorio de la aislación acústica aérea de elementos de construcción
ISO 10534-2:1998Determinación del coeficiente de absorción acústica y de la impedancia acústica en tubos de impedancia parte 2: métodos de la función de transferencia.
INN NCh- ISO 10140/2:2014Acústica- Medición en Laboratorio de la aislación acústica- parte 2 : medición de la aislación acústica aérea

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
https://www.rootman.com/contacto/Está disponible en dos tamaños, 60 x 60 cm y 60 x 40 cm, y en dos espesores, 45-55mm y 70-80 mm.Los colchones vienen dentro de un envoltorio de papel craft.Aislante RootmanChileRootman

Bibliografía

(1) DPL PRESENTA #1 – Rootman, un aislante natural de construcción sustentable, con Juan Carlos Beaumont
(2) Un aislante resistente al fuego | Inventando Chile
(3) Obtenido en abril de 2023( Fichas tecnicas de construccion/ Certificación)
https://www.rootman.com/que-hacemos/
(4) Obtenido en abril de 2023 (Equipo, propósito)
https://www.rootman.com/quienes-somos/
(5) Obtenido en abril de 2023
https://uddventures.udd.cl/blog/participaci%C3%B3n-de-bootman-en-la-construcci%C3%B3n-de-escuela-sustentable
(6) Obtenido en abril de 2023 https://innovapedia.ucsc.cl/asi-es-rootman-el-aislante-termico-hecho-en-chile-resistente-al-fuego/ 

Sistema constructivo 3C basado en botellas PET

Síntesis

El material es un bloque compuesto de botellas plásticas y un hilo plástico que ata las botellas una vez comprimidas. Luego se colocan dentro de un bastidor de madera que contiene dichos bloques dándole estructura.
El proceso de fabricación de este material es muy sencillo y barato. La primera instancia es la recolección de plásticos (botellas). Luego estas botellas se colocan, sin tapa, en una prensa manual disponiéndolas en sentidos contrarios con la zona de la tapa hacia el centro. Una vez colocadas las botellas se comienza a prensar. Una vez que ya están comprimidas se atan con un hilo plástico para evitar que se descompriman. Luego se retiran y ese bloque ya está terminado. Por último, se disponen dentro del bastidor armando tabiques dobles de 0,18 x 0,60 x 1,02 m o triples de 0,18 x 0,60 x 1,53 m.
Este material es utilizado para muros no portantes y cubiertas. Se le coloca una malla para poder revestirlo con cemento (1)

Contexto histórico, social y económico

El inventor de este material fue Lucas Recalde, quien fundó la empresa 3c Construcciones. Es originario de Córdoba de una localidad turística llamada Agua de Oro. Este descubrimiento revolucionó la forma de ver los residuos y la construcción. Ya que recicla una gran cantidad de plásticos y con pocos recursos, casi sin gasto de energía o agua, y los transforma en un material para la construcción de fácil acceso y bajo costo.
El material se desarrolló en Córdoba, en la ciudad turística de Agua de Oro. Surgió de una empresa de triple impacto llamada 3C Construcciones. Es una empresa de desarrollo de tecnologías sociales y ambientales, que se especializa en la reutilización de plásticos, construcción de viviendas sociales y generación de empleo. Partiendo de esas tres premisas, este material nació para cumplir esas expectativas. Es un material bastante reciente ya que la idea de crearlo surgió en el 2014. Sin embargo, en el 2017 terminaron la primer casa con este sistema constructivo. La estructura es de columnas de madera y el material es utilizado como cerramiento. Por último, se le agrega una malla a la pared ya construida y se le hace un revoque grueso con una máquina. Gracias a las propiedades del plástico lo hace un excelente aislante y además, no tiene puentes térmicos. Las terminaciones funcionan de manera similar que las casas construidas de manera tradicional. Gracias a este sistema, las casas son más resistentes, más livianas y más eficientes.
La empresa ayuda a la gente de pocos recursos, económicos y de pertenencia y a personas de lugares vulnerables. Les ofrece empleo y la posibilidad de armar su propia casa trabajando.
Debido al fácil proceso del material y la poca necesidad de energía, el presupuesto para armar una casa se reduce entre un 20% y 50% que con los métodos tradicionales. Además, requiere menos tiempo para la finalización de la obra, ya que con este sistema una casa puede ser construida en 3 meses. Es un material innovador y sustentable, para armar una casa de 100 m2 se necesitan 1500 kilos de botellas, esto lo producen 3000 personas en un día. Actualmente, hay casas con este sistema constructivo en 11 provincias argentinas y hasta han llegado a Camerún, Brasil y Chile.
La creación de este sistema material es una opción viable para la reutilización de residuos inorgánicos como los desechos plásticos, generando una reducción en el impacto en el medio ambiente, su utilización tiene una visión positiva para el planeta, ya que se reduciría el porcentaje de la contaminación en el mundo, además para su utilización durante la construcción de estructuras, enfocándose mucho más en los sectores vulnerables pero permitiendo su utilización para el resto de las clases sociales. El PET es uno de los desechos más contaminantes en la actualidad; añadiendo que la degradación orgánica de sus compuestos puede demorarse hasta 500 años, pero a su vez se tienen grandes beneficios al aplicarse para la construcción:Posee un aislamiento de temperatura mayor a 5 veces que los convencionales, posibilidad de construir muros menos gruesos, un peso significativamente menor al de los ladrillos de arcilla quemada y una mayor resistencia al fuego.
(1-2-6)

Definición ciencia

El material está compuesto por botellas plásticas de diversos tamaños, sin tapa, comprimidas y atadas con un hilo plástico de alta resistencia, contenidas por un bastidor de madera que es lo que le termina de dar la forma de bloque y le da la capacidad de apilarse. Los batidores se crean con pre bastidores metálicos y clavadora neumática. El PET es un polímero que se obtiene mediante una reacción de policondensación entre el ácido tereftálico y el etilenglicol. Pertenece al grupo de materiales sintéticos denominados poliésteres. (1) (4)

Procesamiento

El proceso de este material comienza en la recolección de botellas plásticas. Luego, se vacían completamente y se les quita la tapa. Una vez que la botellas están listas se colocan en una prensa manual con el pico hacia el centro y se comprimen. Se atan con un hilo plástico y por último se arman los bloques con 2 o 3 conjuntos de botellas contenidas por un bastidor de madera.

Propiedades

Normas

NormaTítulo
IRAM 11604:1990Acondicionamiento térmico de edificios. Ahorro de energía en calefacción. Coeficientes volumétricos G de pérdida de calor.
IRAM 11625Acondicionamiento térmico de edificios. Verificación del riesgo de condensación del vapor de agua, superficial e intersticial, en muros, techos y otros elementos de edificios.

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
3C Construcciones
http://3cconstrucciones.com.ar/
Se arman bloques de
 1m x 0.6m
3C ConstruccionesArgentina3C Construcciones

Bibliografía

(1) http://3cconstrucciones.com.ar/
(2) https://area.fadu.uba.ar/wp-content/uploads/AREA2602/2602_molina_cangelli_gatani.pdf
(3)  https://resilientcitiesnetwork.org/3construcciones/
(4) https://www.kerwa.ucr.ac.cr/bitstream/handle/10669/15405/ANEXO%201-PET.pdf?sequence=2&isAllowed=y#:~:text=Qu%C3%ADmicamente%20el%20PET%20es%20un,de%20materiales%20sint%C3%A9ticos%20denominados%20poli%C3%A9steres.
(5) https://viapais.com.ar/villa-allende/1154077-empresa-de-agua-de-oro-construye-un-salon-en-la-residencia-presidencial/
(6) https://www.a24.com/pymes/la-historia-lucas-recalde-el-constructor-casas-triple-impacto-que-no-tiene-techo-n825603
(7) https://tecnologiadelosplasticos.blogspot.com/2011/05/pet.html

Rollo de polietileno de alta densidad

Síntesis

Las membranas geo textiles, son producidas con polietileno virgen de alta densidad y material reciclado. La cual están hechas para resistir a los agentes externos químicos, biológicos que forman unas membranas flexibles, resistentes a la degradación por rayos ultravioleta, una impermeabilidad sobre los líquidos, vapores y humedades. Por eso mismo es indispensable en la construcción, evitando la deshidratación temprana del hormigón, mejorando el curado del piso y lo protege.
Generalmente se venden en rollos de diferentes medidas y diferentes espesores.

Contexto histórico, social y económico

Los primeros sintetizados del polietileno fueron, por primera vez en 1898 por el químico alemán Hans von Pechmann que creo por accidente una sustancia viscosa, blanquezca mientras calentaba diazometan.
La segunda vez alrededor de los años 30 cundo la empresa inglesa ICI, donde Reginald Gibson y Eric Fawcett, trabajaban el etileno, un gas muy ligero elaborado a partir del petróleo; que no tuvo la reacción que esperaban y en cambio se produjo un sólido viscoso blanco.
Sus primeras apariciones fueron en el recubrimiento de cables de telecomunicaciones submarinas alrededor de la segunda guerra mundial.
Cuando esta termia el polietileno aparece como un producto comercial como en envases. Sin embargo este polímero era débil y presentaba deformaciones.
Para los años 50 el profesor Karl Ziegler buscó desarrolla un nuevo tipo de catalizador de polímeros de etileno pero en condiciones menos austeras y encontró la manera de obtener polímero a una presión normal. Al mismo tiempo Giulio Natta, descubro la manera de polimerizar otros monómeros para crear plásticos con el catalizador de Phillips. Así que esta investigación dio origen a los catalizadores Ziegler-Natta, (el cual les sirvió para ganar el premio Nobel en 1963) por su aporte científico a la química.
El Nylon 100 y 200 micrones o Film de Polietileno una forma de polietileno de alta densidad. Esta densidad les da una serie de características únicas que los hacen ideales para aplicaciones en la industria, la agricultura, la construcción. Sus usos pueden ser variables, ya que son resistentes a la mayoría de los productos químicos, son ideales para el almacenamiento de productos peligrosos. También son resistentes a los rayos UV, lo que los hace útiles para aplicaciones al aire libre como en la agricultura, que se utilizan para cubrir los cultivos y protegerlos. En la construcción, se utilizan como forros de estanques y depósitos, y también como materiales de impermeabilización y en la industria del embalaje, se utilizan para la fabricación de bolsas y envases, ya que son resistentes y duraderos.
Estos materiales conllevan a una producción excesiva que generan desechos potencialmente contaminantes. En este caso el polietileno, es uno de los productos qué más desechos generados a nivel industrial, por ello es esencial adquirir conciencia y utilizar polietileno recuperado, hecho a partir de diversos materiales de origen plástico, tanto industriales como obtenidos de distintos desechos de los hogares. Este film se genera a través de un proceso de extrusión el cual es un proceso industrial de fundir y moldear el plástico a flujo constante de presión y fuerza, para obtener la forma deseada. Son de productos originalmente plásticos como silo, bolsas, bidones, etc. dando como resultado polietileno de 200 micrones presentado en forma de film altamente resistente e impermeabilizante tanto con el polvo, como con el agua y la humedad. Se comercializa a un precio notable, son bastante económicos, pero su costo final dependerá de la cantidad de material a comprar, de la medida del rollo (mts) y de los micrones. [1-2-3- 4-5-8-9-10]

Definición ciencia

Este aislante está compuesto por polietileno (PE) es el plástico común que generalmente es una mezcla de compuestos orgánicos similares que difieren en el valor de n. Su estructura química es una cadena larga de átomos de carbono, con dos átomos de hidrógeno unidos a cada átomo de carbono. (+CH2-CH2+n)
El polietileno se obtiene a partir del monómero etileno (eteno). Tiene la fórmula C2H4, que consiste en un par de grupos metilenos (CH2) conectadas por un enlace doble. [6]

Procesamiento

El procesamiento de este aislante es elaborado en un 97% Polietileno que es un polímero sintético que se obtiene mediante la polimerización de eteno (también conocido como etileno). Durante este proceso, se calienta y se mezcla el etileno con un catalizador. Luego, el polietileno se somete a un proceso de extrusión para producir los productos finales. Además se le agrega Negro de humo está representado en el 2.5% de la composición. Con la finalidad de garantizar la vida útil de la membranas en condiciones de exposición químicas y ambientales. Y otros aditivos estos se prestan en un 0.5% de composición incluye antioxidantes como estabilizador para evitar la oxidación del material que puede suceder por los procesamientos a los que se expone el producto. Los antioxidantes utilizados son los fenoles (HPA), fosfitos (HPPS) y aminas (HALS).La calidad final de este polietileno dependerá de la calidad de las materias primas utilizadas y del proceso de fabricación. [7][8]

Propiedades

Normas

NormaTítulo
ISO 527-3:2018Plastics – Determination of tensile properties – Test conditions for films and sheets [11-12]
ASTM 
D638-14
Standard Test Method for Tensile Properties of Plastics [11-13]
ASTM
 D1922-15
Standard Test Method for Propagation Tear Resistance of Plastic Film and Thin Sheeting by Pendulum Method [11-14]
ASTM
 D882
Tensile Testing of Thin Plastic Sheeting  [15]  

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
SIXCOM
(+54) 011 4724 4900
comercial@sixcom.com.ar
creditocobranza@sixcom.com.ar
proveedores@sixcom.com.ar
117 (Ex Suipacha) 2678 San Martín, Buenos Aires (CP 1650)
https://sixcom.com.ar/productos/industrias/#genericos
Bobinas film de
polietileno para todo tipo de uso,
coberturas, Negro / Cristal
en 100, 150 y 200 micrones.
Genéricos construcción San Martin Argentina (Buenos Aires)Sixcom
Mayorista-Plast®
Margarita Weild 1369, Lanus Este. Buenos Aires.
11-2899-1164
info@mayoristaplast.com.ar
https://mayoristaplast.com.ar/handmade-vase-yuugen-zmvxw-
Rollos de 100/200/400 MICRONESFILM DE POLIETILENO NEGRO
100/200/400 MICRONES
Lanús (Buenos Aires, Argentina)Terrapol
Tecnolibertador 
Tel: (11) 67413500
tecnolibertador@tecnolibertador.com
Uriburu 1232 Pilar Buenos Aires
Powered by Mercado 
https://www.tecnolibertador.com.ar/
Se vende fraccionado en 7mts de ancho y el largo en múltiplos de 1mts.
 El rollo entero viene de 50mts de largo x 7mts de ancho.
Geo membranas polietilenoPilar, Buenos aires. ArgentinaTecnolibertador

Bibliografía

(1) Polietileno de alta densidad- consultado 19/04/2023
https://es.wikipedia.org/wiki/Polietileno_de_alta_densidad#Producci%C3%B3n
(2) Video de YouTube (Polietileno, obtención y aplicaciones) – Consultado 19/04/2023
https://www.youtube.com/watch?v=i6KtOtJRQsM
(3) Video de YouTube (Expertos en el reciclaje plástico) ) – Consultado 19/04/2023
https://www.youtube.com/watch?v=C9c8V1qaRvE
(4) Universidad de Burgos – Historia del plástico- Consultado 19/04/2023
https://historiamateriales.ubuinvestiga.es/plasticos/
(5) Educación en ingeniería química-  Consultado 19/04/2023
https://www.ssecoconsulting.com/breve-historia-del-polietileno.html
(6) Tecnología de los plásticos – Consultado 19/04/2023
https://tecnologiadelosplasticos.blogspot.com/2012/07/polietileno-pe.html?m=1
(7) Grupo empresarial (GHA) – Consultado 19/04/2023
https://grupogha.com/geomembrana-hdpe-lisa-nominal/
(8) Mayorista-plast ( TERRAPOL) – Consultado 26/04/2023
https://mayoristaplast.com.ar/handmade-vase-yuugen-zmvxw-?gclid=EAIaIQobChMIpefP8NXH_gIVYxTUAR3XWgpyEAAYAyAAEgIvbPD_BwE
(9) Arquimac-  Consultado 26/04/2023
https://www.arquimac.com.ar/comprar-polietileno-200-micrones.php
(10) Anáhuac México- Extrusor de polímeros, ¿qué es y cómo funciona?
https://www.anahuac.mx/mexico/noticias/Extrusor-de-polimeros-que-es-y-como-funciona#:~:text=%C2%BFQu%C3%A9%20es%20el%20proceso%20de,pol%C3%ADmero%20para%20su%20aplicaci%C3%B3n%20final.
(11) Agro-redes (POLCOM) (consultado 26/04/2023)
https://grupo-ap.com.ar/cdeex_firma_iraola/
https://grupo-ap.com.ar/wp-content/uploads/2017/12/polietileno-negro.pdf
(12)  https://www.iso.org/standard/70307.html
(13) https://repositorio.uisek.edu.ec/bitstream/123456789/2628/1/ASTM%20D638-14.pdf
(14) https://www.astm.org/d1922-15r20.html
(15) https://www.instron.com/-/media/literature-library/applications/2006/02/astm-d-882—tensile-testing-of-thin-plastic-sheeting.pdf

Revestimiento a base de arcilla

Síntesis

La extracción de arcillas se realiza en canteras. La materia prima obtenida se almacena antes de entrar en la línea de fabricación. Luego entra en un proceso de desmenuzado dentro de una maquinaria que reduce el tamaño del grano de la arcilla consiguiendo una homogeneización del material, evitando un mayor consumo energético y alargando la vida útil de los equipos. Una vez desmenuzada, los diferentes tipos de arcilla se almacenan en silos. A continuación se mezcla la proporción de arcillas, desgrasantes y posibles aditivos que van a formar la mezcla arcillosa. Para ello se emplean silos independientes con dosificadores o cajones alimentadores. Se comercia la arcilla en bolsas de distintos tamaños para preparar la mezcla según el uso que le queramos dar. Una vez preparado se aplica en capas delgadas y se alisa con herramientas especializadas para crear una superficie uniforme.

Contexto histórico, social y económico

La arcilla es una roca sedimentaria compuesta por agregados de silicatos de aluminio hidratados procedentes de la descomposición de rocas que contienen feldespato, como el granito. [1] Su primera aparición fue en los 4000 años a.C. con los alfareros de Egipto, Medio Oriente, India y parte de China, quienes además inventaron los hornos que ayudaron a producir objetos de cerámica de alta calidad y con superficies barnizadas. Hecho que coincidió con la invención de la fundición de metales. [2]
Las arcillas se pueden clasificar de acuerdo con varios factores. Así, dependiendo del proceso geológico que las originó y a la ubicación del yacimiento en el que se encuentran, se pueden clasificar en: Arcilla primaria: se utiliza esta denominación cuando el yacimiento donde se encuentra es el mismo lugar en donde se originó. El caolín es la única arcilla primaria conocida.
Arcillas secundarias: son las que se han desplazado después de su formación, por fuerzas físicas o químicas. Se encuentran entre ellas el caolín secundario, la arcilla refractaria, la arcilla de bola, el barro de superficie y el gres. [1] Se caracteriza por adquirir plasticidad al ser mezclada con agua, y también sonoridad y dureza al calentarla por encima de 800°C. La arcilla endurecida mediante la acción del fuego, fue la primera cerámica elaborada por los seres humanos, y aún es uno de los materiales más baratos y de uso más amplio. Ladrillos, utensilios de cocina, objetos de arte e incluso instrumentos musicales como la ocarina son elaborados con arcilla. También se utiliza en muchos procesos industriales, como en la elaboración de papel, producción de cemento y procesos químicos.
El revestimiento a base de arcilla tiene un impacto ambiental menor en comparación con otros materiales de construcción, ya que la arcilla es un recurso natural renovable y abundante. Su producción requiere menor intensidad de energía y emisiones de gases de efecto invernadero a comparación de otros materiales.
Sin embargo, el proceso de producción del revestimiento a base de arcilla puede generar residuos y emisiones. Por ejemplo, el proceso de cocción puede generar emisiones de dióxido de carbono, óxidos de nitrógeno y partículas finas. Además, la disposición de los residuos de arcilla y otros materiales utilizados en la producción puede generar impactos ambientales negativos.
Para minimizar el impacto ambiental del revestimiento a base de arcilla, es importante implementar prácticas de producción sostenibles y utilizar tecnologías limpias y eficientes. Además, se pueden implementar prácticas de gestión de residuos y reciclaje para reducir la cantidad de residuos generados y minimizar su impacto en el medio ambiente. (11)

Definición ciencia

La arcilla se considera físicamente un coloide, de partículas extremadamente pequeñas y superficie lisa. El diámetro de las partículas de la arcilla es inferior a 0,002 mm. En la fracción textural arcilla puede haber partículas no minerales, los fitolitos. Químicamente es un silicato hidratado de alúmina, cuya fórmula es: Al2O3 · 2SiO2 · H2O [6]

Procesamiento

-Selección y mezcla de los materiales: El mortero a base de arcilla se compone de arcilla, arena y agua. Los materiales se seleccionan cuidadosamente y se mezclan en las proporciones adecuadas para obtener la consistencia y las características deseadas del mortero.
-Trituración y molienda: La arcilla y la arena se trituran y muelen hasta obtener un tamaño de partícula adecuado para la mezcla.
-Mezclado: Los materiales triturados y molidos se mezclan en una mezcladora con agua para formar una pasta homogénea.
-Reposo: La pasta de mortero se deja reposar durante un tiempo para que los materiales se hidraten y se mezclen adecuadamente.
-Aplicación: El mortero se aplica sobre la superficie deseada, como una pared o un suelo, y se alisa o se texturiza según sea necesario.
-Secado y curado: El mortero se seca al aire durante un tiempo determinado, dependiendo del clima y las condiciones ambientales. Luego, se cura durante un período de tiempo adicional para que los materiales se endurezcan y se unan adecuadamente. (12)

Propiedades

Normas

NormaTítulo
ASTM C144-18
[10]
Standard Specification for Aggregate for Masonry Mortar
ACI 530/ASCE 5/TMS 402 [13]Baldosas y losas cerámicas. Determinación de la resistencia a la flexión y de la resistencia al choque
UNE-EN 13914
[14]
Diseño, preparación y aplicación del revoco exterior y del enlucido interior
UNE-EN 1015
[15]
Métodos de ensayo de los morteros para albañilería. Parte 1: Determinación de la distribución granulométrica (por tamizado)
ISO 1927-1
[16]
Monolithic (unshaped) refractory products — Part 1: Introduction and classification
ASTM C155 [17]Standard Classification of Insulating Firebrick

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
Ecoclay
Revestimientos
Naturales
[4]
Morteros de Arcilla
(Bolsas de 25kg y
1.000kg)
Ecoclay
BASE+FIBRA
España
Dir:
Penitencia,
47 – 12540
Vila-real
(Castellón)
Ecoclay
Embarro – Tradición+Innovación
[5]
Morteros de Arcilla
(Bolsas de 20kg y 500kg)
Yoshima
ClayFix
Portugal
Dir:
Rua Dr.
Parreira, 43,
8800-346
Tavira.
(Disponible
también en
España y
Reino Unido)
ClayTec
FARA SCA
Refractarios
[8]
Mortero refractario de Arcilla (Bolsa de 5, 10, 30kg)
Rendimiento: 10kg/m2
FARA Arcilla RefractariaArgentina Dir:
Calle 71 (América)
Nº 3979
B1653HFI –
Villa
Ballester
FARA

Bibliografía

(1) “Arcilla”. Wikipedia, la enciclopedia libre.
(2) “Historia de la Arcilla”. Modelado de Arcilla, de tus manos a la realidad. Wix Blog.
(3) “Qué es Arcilla y su Origen”. El Origen de la Arcilla, Ladrillera Mecanizada Blog. (2021)
(4) “Ecoclay”, revestimientos Naturales. (España)
(5) “Embarro”, tradición+innovación. (España)
(6) “Arcilla”. Lumitos AG Leads to Success. Química.es Blog.
(7) “Revestimiento Natural de Arcilla”. ArkiALBURA, diseño sostenible y arquitectura. (2021)
(8) y (9) “FARA SCA”. Refractarios. (Argentina) Listado de materialidad + catálogo de productos nacionales.
(10) ASTM International – Standards Worldwide
(11) “Cómo afecta al medio ambiente la extracción de minerales”
(12) “Arcilla en la construcción. Cómo mezclar y aplicar revocos de arcilla.”
(14) “UNE Normalización Española”
(16) “ISO International Organization for Standardization”
(17) “ASTM International – Standards Worldwide”

Membrana de PVC impermeabilizante para techos

Síntesis

El material estudiado está compuesto químicamente (a grandes rasgos) por etileno y cloro, conformantes del PVC (Policloruro de vinilo); tiene además ciertos aditivos para mejorar propiedades cómo la flexibilidad, la resistencia a la difusión de vapor, reacción al fuego, estanqueidad, entre otras propiedades. Su fabricación se basa en procesos químicos cómo el craqueo, electrólisis y polimerización. Es por esto que clasificamos el producto en la industria petroquímica. Además, solemos encontrar en la composición (en escala macro) otro material interior cómo una maya de poliéster, lo que le brinda al producto una mayor resistencia al desgarro.
La aplicación de este material es en techos y cubiertas exteriores; se utiliza para brindar (cómo su nombre indica), no sólo una impermeabilización, sino también una protección de otros factores y agentes externos cómo el calor. Hablando del método de aplicación, es manual, por lo tanto, se requiere de operarios y ciertas herramientas cómo una soldadora tipo Leister y un rodillo de caucho sintético.
Si bien en Argentina la disponibilidad de este material es escasa comparada con la de Estados Unidos o Europa, se pueden encontrar algunas opciones. [1] [9]

Contexto histórico, social y económico

Las membranas de PVC surgen como material compuesto en el año 1966, producto de investigaciones de la empresa alemana Trocal, en búsqueda de una variante superior y económica a los sistemas tradicionales de impermeabilización de techos con brea o membranas asfálticas. Este mismo, ofrece una puesta en obra más eficiente a los mencionados debido a su proceso de ensamblaje, soldadura por aire caliente. La cual concluye con uniones físicas permanentes, de mayor resistencia y herméticas, sin la necesidad de provocar una junta o transición entre materiales distintos en zonas críticas del techo a impermeabilizar.[1]
El PVC, como materia prima comercial, se inició a producir en la década de 1920 en Europa, posterior a las primeras aproximaciones de su descubrimiento accidental en los laboratorios del físico francés Henri Regnault y el alemán Eugen Baumann en el siglo XIX [2], producto de un periodo de desarrollo e investigación en la industria química, la polimerización del etileno y cloro. Más tarde, en conjunto del surgimiento de las técnicas de los termoplásticos (que posibilitó la fabricación de fluidos calentándolos y otorgando una forma que mantendrían una vez enfriados), la demanda y cambios en el mercado internacional, la Segunda Guerra Mundial y la disminución en la fuente de diversas materias primas, impulsó a la industria polimérica a elaboraciones e innovaciones en el campo de nuevos materiales plásticos sintéticos.[3]
Transcurridos los años, en 1966, la empresa alemana Trocal, desarrolló una fórmula con PVC a modo de matriz y una serie de aditivos tales como compuestos resistentes a los rayos UV, plastificantes, pigmentos y fibras de vidrio o poliéster para otorgar mayor resistencia al desgarro y a la rotura. Con la que dio origen a las membranas impermeabilizantes de PVC. Las cuales gozaron rápidamente de buena fama para el uso que promovió su creación, la impermeabilización de techos en la construcción.
No fue hasta treinta años más tarde, en el inicio de su producción industrial en los Estados Unidos, que el material empezó a desempeñarse con fallas ocasionadas en la misma manufactura del material. Puesto que, en la búsqueda de abaratar su costo, se redujo la cantidad de plastificantes en la fórmula. Decisión que derivó en la rotura y resquebrajamientos de las membranas en su puesta en obra, tras dilatarse y contraerse debido a los cambios de temperatura a los que se expone. En otras palabras, el PVC tuvo un rendimiento acorde a sus condiciones naturales, inflexible ante las adversidades de cambio de temperatura en el medio.[1]
En relación al impacto ambiental que ocasiona, se verifica que, en la producción de su matriz, el PVC, las emisiones de CO2 y la huella de carbono son muchos menores en comparación a otros materiales como el acero, el vidrio u otros plásticos como el PET, PP, PS, etc. Referido a su puesta en obra, cuenta con la ventaja de ser pensado con periodos de vida útil extensos (mínimo quince años), al contrario de otros plásticos destinados a ser descartables y desechados rápidamente. Finalmente, se reconoce su capacidad de ser reciclado al 100%, pero ha de ser estudiado el impacto y gastos de energía en la separación e implicancias de los aditivos, refuerzos y demás capas que integran la membrana impermeabilizante de PVC.[4]

Definición ciencia

La membrana impermeabilizante para techos de PVC, es un material compuesto, con una matriz de PVC y una serie de refuerzos tales como plastificantes, estabilizadores térmicos, inhibidores de luz ultravioleta (UV), biocidas y pigmentos de color. Como integrante principal, el PVC o policloruro de vinilo, se compone químicamente de 57% de cloro y 43% de carbono, procedente primordialmente del etileno en su producción.[2] En su presentación comercial, se encuentra integrado por tres capas, dos exteriores de PVC y una intermedia de malla de poliéster o lana de vidrio como refuerzo.[7]

Procesamiento

Como se ha mencionado antes, el PVC se obtiene mediante el procesamiento del etileno y el cloro en distintas proporciones. El primero, se obtiene mediante el craqueo del petróleo, que consiste en quebrar o romper los enlaces químicos del compuesto. Luego por medio de la evaporación del agua de mar, se concentran las sales de las que se extrae el cloruro de sodio. El mismo, llevado a la electrólisis, se descompone eléctricamente para obtener el cloro.[9]
Una vez adquiridos estos componentes, son sometidos a la polimerización, el proceso químico por el que los reactivos monómeros que son de bajo peso molecular, se agrupan y dan espacio a una molécula de gran peso denominada polímero. Con lo que obtenemos el PVC o cloruro de polivinilo como materia prima, normalmente presentada en un polvo blanco, amorfo y opaco. [10]
A continuación, las membranas impermeabilizantes de PVC son fabricadas mediante un proceso conocido como multi extrusión [5], en el que, a través de una extrusora por material, se suministran las capas necesarias de cada uno, se presionan y fusionan en una sola pieza de un molde predeterminado.[8] En este proceso, se cuenta con capas de PVC (reforzado con diversos aditivos) y una malla de poliéster intermedia destinada a mejorar las prestaciones mecánicas de la membrana final.

Propiedades

Normas

NormaTítulo
UNE -EN – 13956Láminas flexibles para impermeabilización. Láminas plásticas y de caucho para impermeabilización de cubiertas. Definiciones y características. [11]
ISO 9001Certificación de calidad. [11]
ISO 14001Certificación medio ambiental [11]
UNE EN 1850-2Láminas flexibles para impermeabilización. Determinación de los defectos visibles. Parte 2: Láminas plásticas y de caucho para la impermeabilización de cubiertas.
UNE EN 1848-2Láminas flexibles para impermeabilización. Determinación de la longitud, de la anchura, de la rectitud y de la planeidad. Parte 2: Láminas plásticas y de caucho para la impermeabilización de cubiertas.

UNE EN 1849 – 2
Láminas flexibles para impermeabilización. Determinación del espesor y de la masa por unidad de superficie. Parte 2: Láminas plásticas y de caucho para la impermeabilización de cubiertas
UNE EN – 1928Láminas flexibles para impermeabilización. Láminas bituminosas, plásticas y de caucho para la impermeabilización de cubiertas. Determinación de la estanquidad al agua.
UNE EN – 13501Clasificación en función del comportamiento frente al fuego de los productos de construcción y elementos para la edificación. Parte 1: Clasificación a partir de datos obtenidos en ensayos de reacción al fuego.
UNE EN 12316 – 2Láminas flexibles para impermeabilización. Determinación de la resistencia al pelado del solapo. Parte 2: Láminas plásticas y de caucho para la impermeabilización de cubiertas.
UNE EN 12317-2Láminas flexibles para impermeabilización. Determinación de la resistencia al cizallamiento de los solapos. Parte 2: Láminas plásticas y de caucho para la impermeabilización de cubiertas.
UNE EN 1931Láminas flexibles para impermeabilización. Láminas bituminosas, plásticas y de caucho para la impermeabilización de cubiertas. Determinación de las propiedades de transmisión del vapor de agua.
UNE EN 13583Láminas flexibles para la impermeabilización. Láminas bituminosas, plásticas y de caucho para impermeabilización de cubiertas. Determinación de la resistencia al granizo.
UNE EN – 12311-2Láminas flexibles para impermeabilización. Determinación de las propiedades de tracción. Parte 2: Láminas plásticas y de caucho para la impermeabilización de cubiertas.
UNE EN 12691Láminas flexibles para impermeabilización. Láminas bituminosas, plásticas y de caucho para la impermeabilización de cubiertas. Determinación de la resistencia al impacto.
UNE EN 12730Láminas flexibles para impermeabilización. Láminas bituminosas, plásticas y de caucho para la impermeabilización de cubiertas. Determinación de la resistencia a carga estática.
UNE EN 12310-2Láminas flexibles para impermeabilización. Determinación de la resistencia al desgarro. Parte 2: Láminas plásticas y de caucho para la impermeabilización de cubiertas.
UNE EN 1107-2Láminas flexibles para impermeabilización. Determinación de la estabilidad dimensional. Parte 2: Láminas plásticas y de caucho para la impermeabilización de cubiertas.
UNE EN 495-5Láminas flexibles para impermeabilización. Determinación de la plegabilidad a baja temperatura. Parte 5: Láminas plásticas y de caucho para la impermeabilización de cubiertas.
UNE EN 1297Láminas flexibles para impermeabilización. Láminas bituminosas, plásticas y de caucho para la impermeabilización de cubiertas. Método de envejecimiento artificial por exposición prolongada a la combinación de radiación UV, temperatura elevada y agua.

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
SIKA
https://ar.sikaguia.com/pro ducto/impermeabilizar-una- cubierta-verde-sarnafil-g-47 6-12/
https://obra4.com.ar/
Superficie: Acabado liso Capa superior: Naranja Capa inferior: Gris
Rollo de: 50 m2 Ancho: 2 m
Largo: 25 m
Espesor: 1,2 mm
Peso: 1,5 kg/m2
Sarnafil® G 476-12Suiza – ArgentinaSika
Mapei group Teléfono +54
(348)-443-5000
MAPEPLAN M, hoja
técnica | Mapei
Pallets de de 14 rollos
Rollos de 25 m 20 m 15 m (dependiendo de los espesores)
Mapeplan MItaliaPolyglass

Bibliografía

(1) Brief History of PVC Roofing Membranes – PVC Roofing
(2) Acerca del PVC – ECVM
(3) Historia de los Polímeros – Polimeros Unam (wordpress.com)
(4) PVC Y SUSTENTABILIDAD – Aapvc
(5) MAPEPLAN M, hoja técnica | Mapei
(6) S-P-00905 – Mapeplan PVC-P Waterproofing Membranes (environdec.com)
(7) Sikaplan® SGmA-15 | Membranas sintéticas
(8) Coextrusión de plásticos | Bausano
(9) la composicion del PVC (mejordealuminio.com)
(10)  Policloruro de vinilo – PVC | Textos Científicos (textoscientificos.com)
(11) UNE – Busca tu norma

Placa de papel 100% reciclado y resina no basada en hidrocarburos

Síntesis

La placa de papel 100% reciclado y resina sin petróleo es un material ecológico y sostenible debido a su fabricación con productos reciclados y carencia de petróleo que ofrece una alternativa a las placas de papel convencionales. Este material está compuesto por papel reciclado y una resina sin petróleo que se utiliza como aglutinante, lo que lo hace más amigable con el medio ambiente y reduce la dependencia de los recursos fósiles.
La fabricación de este material implica la creación de una pulpa de papel a partir de papel reciclado que se mezcla con la resina sin petróleo y se somete a una presión y temperatura adecuadas para crear las placas de papel. Se utiliza en una amplia variedad de aplicaciones, como envases de alimentos, productos de embalaje, paneles de construcción y materiales de papelería. Su uso en la industria alimentaria ha crecido debido a que no contiene productos químicos dañinos para la salud.
Este material también se utiliza en la fabricación de productos para la construcción, como cerramientos, ya que es resistente y fácil de trabajar. Además, las placas de papel son ideales para la producción de tarjetas de visita y folletos, ya que ofrecen una alternativa a los folletos de papel comunes.

Contexto histórico, social y económico

El papel reciclable es una técnica de reciclaje que permite utilizar el papel usado como materia prima para producir nuevos productos de papel. Esta técnica se ha vuelto cada vez más común y eficiente en la producción de papel sostenible, reduciendo la necesidad de talar árboles y la cantidad de residuos generados. Se cree que el reciclaje tuvo su origen en Japón alrededor del año 1031, donde comenzó la primera reutilización de papel desechado de la que se tenga registro. Hoy en día, el papel reciclado es utilizado en la fabricación de una amplia variedad de productos y su versatilidad en cuanto a textura y apariencia lo hace ideal para una amplia gama de aplicaciones.
La placa de papel 100% reciclado con resina sin petróleo es un desarrollo tecnológico que comenzó a hacerse visible en el siglo XX en varios lugares alrededor del mundo en respuesta a la necesidad de alternativas sostenibles para el medio ambiente a los materiales convencionales. No hay un lugar específico donde se haya originado, sino que es el resultado de la colaboración y el trabajo conjunto de empresas e instituciones de investigación en diferentes países. El objetivo era reducir el impacto ambiental de la producción de papel y productos derivados del papel, al mismo tiempo que se promovía la economía circular y la reducción de residuos.
Actualmente las placas son fabricadas por la empresa Paneltech bajo el nombre Paperstone, las mismas tienen diferentes aplicaciones tales como mesadas en cualquier habitación, marcos de ventanas, tablas de cortar, muebles, etc. La producción a gran escala comenzó a fines del siglo XX y ha ido en aumento en el actual siglo. Sin embargo, el uso de este material aún no es tan común como el de los materiales convencionales, y su producción y uso se limita en gran medida a empresas y organizaciones que buscan alternativas para no dañar el medio ambiente.
El uso de la placa de papel 100% reciclado con resina sin petróleo se enmarca dentro de un paradigma socio-tecnológico que valora la sostenibilidad y el cuidado del medio ambiente, se centra en la búsqueda de soluciones innovadoras que puedan satisfacer las necesidades humanas sin comprometer la capacidad del planeta para mantener la vida. Su aparición ha traído varios cambios fundamentales en el ámbito de la producción de materiales y la sostenibilidad ambiental, entre ellos podemos encontrar la reducción del impacto ambiental, el ahorro de recursos, la mejora de la calidad del aire, mayor durabilidad y el estímulo a la economía circular.
Estas placas pueden ser utilizadas tanto en áreas de construcción como en decoración y diseño de muebles, también en fabricación de electrodomésticos, artes gráficas y material de embalaje. En los comienzos del uso del material era costoso debido a que su fabricación estaba ligada a laboratorios, industrias y uso militar, pero en la actualidad es un material que es accesible para su aplicación en obras tanto de empresas y organizaciones como particulares que buscan soluciones más ecológicas.
Al contrario que el papel común, su materia prima, la placa de papel es un material que no abunda en el planeta debido a su reciente comienzo de implementación y su no tan normalizado método de fabricación. Estas placas ya son un material reciclado, pero es posible su reciclaje según sus fabricantes. Los derivados del mismo son diferentes tonalidades y rugosidades del material para la aplicación en la que se esté utilizando. La contaminación que genera el reciclado de papel es mínima ya que es un proceso que se comenzó a utilizar en respuesta a la gran contaminación que genera la fabricación de otros materiales de industria y de papelería. Por el momento no se fabrica en la República Argentina pero el uso de estas placas está creciendo alrededor del mundo.

Definición ciencia

La placa de papel 100% reciclada con resina sin petróleo generalmente está compuesta de papel reciclado y resina sin petróleo, aunque puede variar dependiendo del fabricante y la aplicación específica. El papel utilizado en su fabricación puede ser papel periódico, cartón, papel de oficina u otro tipo de papel reciclado. La resina sin petróleo se utiliza como aglutinante para unir las fibras de papel y proporcionar estabilidad y resistencia a la placa. Las resinas sin petróleo más comúnmente utilizadas son la resina de soja, la resina de almidón y la resina de melamina formaldehído. Debido a que el papel es el factor principal tiene una gran proporción en la mezcla, siendo la resina utilizada para unir las capas en mucha menor medida.

Procesamiento

La elaboración de Paperstone comienza con la selección de papeles y papeles de cartón viejo ya entregados al reciclaje, lo que reduce el impacto ambiental al aprovechar materiales que de otra manera podrían terminar en vertederos. Estos materiales se mezclan con resinas libres de petróleo para generar una pulpa, que es una especie de masa pegajosa pero no adhesiva. A continuación, se colocan en una plancha a una temperatura y presión específicas entre 120 y 180 grados Celsius para darle forma de tabla, lo que resulta en un producto final resistente y duradero.

Propiedades

Normas

NormaTítulo
40 CFR 261 (7)Identificación y listado de residuos peligrosos
40 CFR 370 (8)Informes de sustancias químicas peligrosas
40 CFR 372 (9)Informe de liberación de sustancias químicas tóxicas
NSF/ANSI 51 (3) (10)Certificado de producto para materiales de equipos alimenticios
IRAM 2159 (11)Productos prensados a base de papel y resinas termoestables Láminas y planchas.

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
CDUK Surface Design Solutions
https://cdukltd.co.uk/
Placas de material de 3658mm x 760mm y de 3658mm x 1525mm.
Grosor desde 6mm hasta 19mm y peso desde 24kg a 147kg.
(12)
PaperstoneReino Unido e IrlandaPaperstone
Ice Stone
https://icestoneusa.com/
Placas de material (Tamaño no especificado para público general, solo contactándose con la empresa)
(13)
PaperstoneBrooklyn, Nueva York. Estados UnidosPaperstone
Greenhome Solutions
https://www.ghsproducts.com/
Placas de material (Tamaño no especificado para público general, solo contactándose con la empresa)
(14)
PaperstoneSeattle, Washington. Estados UnidosPaperstone

Bibliografía

(1) (n.d.). Fabrication and Finish Guide.
Obtenida el 18 de abril de 2023, de
https://paperstoneproducts.com/wp-content/uploads/2022/03/PaperStone_Fabrication-Manualaddendum.pdf
(2) (n.d.). Safety Data Sheet.
Obtenida el 18 de abril de 2023, de
https://paperstoneproducts.com/wp-content/uploads/2021/07/Copy-of-PaperStone_MSDSV1.pdf
(3) (n.d). Foodsafe Certification.
Obtenida el 18 de abril de 2023, de
https://paperstoneproducts.com/wp-content/uploads/2021/09/PaperStone_NSF_foodsafe_certification.pdf
(4) (n.d). PaperStone – The Unique Countertop That’s Both Sustainable and Affordable.
Obtenida el 18 de abril de 2023, de
https://www.ghsproducts.com/news/paperstone-recycled-paper-countertops/
(5) (n.d). PAPERSTONE® & AFFORDABILITY.
Obtenida el 18 de abril de 2023, de
https://www.greencountertopsdirect.com/paperstone-and-affordability/
(6) (n.d). Care & Maintenance.
Obtenida el 18 de abril de 2023, de
https://www.ghsproducts.com/PS-CareMaint.pdf
(7) (n.d). PART 261—IDENTIFICATION AND LISTING OF HAZARDOUS WASTE.
Obtenida el 18 de abril de 2023, de
https://www.ecfr.gov/current/title-40/chapter-I/subchapter-I/part-261
(8) (n.d). PART 370 —HAZARDOUS CHEMICAL REPORTING: COMMUNITY RIGHT-TO-KNOW.
Obtenida el 18 de abril de 2023, de
https://www.ecfr.gov/current/title-40/chapter-I/subchapter-J/part-370?toc=1
(9) (n.d.). PART 372—TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW
Obtenida el 18 de abril de 2023, de
https://www.ecfr.gov/on/2023-05-03/title-40/chapter-I/subchapter-J/part-372
(10) (n.d). Kiwa NSF/ANSI 51 product certificate for food equipment materials.
Obtenida el 18 de abril de 2023, de
https://www.kiwa.com/en/service2/certification/nsf-ansi-51-product-certificate-food-equipment-materials/
(11) (n.d). IRAM 2159: Productos prensados a base de papel y resinas termoestables Láminas y planchas.
Obtenida el 9 de junio de 2023, de
https://catalogo.iram.org.ar/#/normas/detalles/2977
12) (n.d). CDUK Surface Design Solutions.
Obtenida el 9 de junio de 2023, de 
https://cdukltd.co.uk/colour-selector/?filter_cat_0=220
(13) (n.d). Ice Stone, Made in the USA.
Obtenida el 9 de junio de 2023, de
https://icestoneusa.com/paperstone/
(14) (n.d). Greenhome Solutions
Obtenida el 9 de Junio de 2023, de
https://www.ghsproducts.com/paperstone-sustainable-composite-surfaces/