Todas las entradas de Materialoteca

Flex Revest piedra flexible (Piedra Flex)

Síntesis

La piedra flexible consiste en finas láminas de entre 1 y 3 mm de espesor de piedra natural, con una capa posterior de resina poliéster y fibra de vidrio. 

-La fibra de vidrio y resina poliéster que le dan flexibilidad y fuerza. 

Para su fabricación consiste de tres capas: 

-Tela: La base que proporciona estructura 

-Adhesivo: permite la adherencia 

-Placa fina de piedra natural: proporciona la apariencia de piedra auténtica. 

La piedra flexible es un producto que se utiliza a nivel mundial, por lo que es fácil de obtener. Su aplicación es simple y se puede adherir a cualquier superficie como: hormigón, cerámica, madera, metal, fibra de vidrio, paredes etc. (1)

Contexto histórico, social y económico

La piedra flexible es un material que se originó en Europa, no se sabe mucho de su creador, sólo que era alemán y un diseñador de muebles muy observador, descubrió un material que tiene excelentes propiedades prácticas (como durabilidad, reutilizable, inercia térmica, aislamiento acústico, ignífuga, etc.) y cualidades estéticas que lo convierten un material agradable a la vista y muy útil para ciertos casos. (2) 

Como ya se mencionó anteriormente, surgió en Europa, su creador era un diseñador de muebles alemán (del cuál se desconoce nombre), el cuál descubrió que cuando quitabas de una mesa rota las resinas utilizadas en revestimientos de piedra, quedaba una piel de piedra restante, esto ocurrió en el año 1995. Luego de pocos años de investigación y desarrollo llegaron a perfeccionar el proceso a lo que conocemos hoy en día. Primero se utilizó para muebles, puertas y cosas de interior, después llegaron a la construcción y comenzaron a darle otros usos como revestimientos de paredes y techos, del interior y en el exterior, donde se utiliza para cubrir 

las fachadas. Con la llegada de la piedra flex hubo varios cambios fundamentales tras su aparición al ser flexible, permite revestir superficies curvadas y le da a los ambientes un aire natural con más facilidad, cosas que con la piedra natural era imposible o mucho más complicado, además es resistente a los rayos ultravioleta. Tiene un costo por Lámina 122cm x 61cm x 3mm de $38250. 

Además, un dato interesante, es que en contexto socio-tecnológico del año 1995, se observaba un crecimiento significativo en el uso de tecnologías de la información y comunicación, ya que fue la aparición de Windows 95, un muy exitoso sistema operativo y el ecosistema que logró que millones de personas descubrieran la informática doméstica, también se destacaba una creciente preocupación por los temas relacionados con la globalización y la competitividad en un mundo cada vez más interconectado. (2) 

Se realiza un proceso de extracción, que minimiza el impacto medioambiental, además de que es un material reciclable, pero por otro lado,no es muy abundante y no es un material que se consiga fácilmente en Argentina, por lo que el transporte desde otro país puede aumentar bastante su impacto ambiental. También tiene algunos derivados utilizables como el granito, cuarzo, mica, etc… 

Definición ciencia

La piedra flexible natural está formada por una delgada capa de fibra de vidrio y resina de poliéster que da un soporte adecuado de la lámina de piedra. El espesor de la lámina varía dependiendo de cada referencia, y por su composición geológica no existen dos piedras flex iguales, se transforma en una superficie maleable y adaptable a las superficies más curvas lo que hace que su diseño sea único. (3)

Procesamiento

El revestimiento de piedra flexible está hecho de una fina capa de piedra despojada de una losa de mármol de piedra metamórfica, en lugar de cortarla de una piedra sólida o un material compuesto prefabricado. Las finas chapas de 0,5 mm a 2 mm de espesor de pizarra, se separan de las losas de piedra originales más gruesas adhiriendo una fina capa de soporte compuesto de fibra de vidrio/resina de poliéster. No es necesario pulir la superficie para adelgazar. Cuando las resinas se curan, el composite se quita y se lleva consigo la fina capa de piedra.

Propiedades

Normas

NormaTítulo


ASTM C-121 (5)


Absorción de agua, %por peso (Prueba realizada en superficie fina) 


ASTM C-97 (5)

Absorción de agua, %por peso (Prueba realizada en superficie fina pegada en pieza de mármol.

IS:9162-1979 (5)


Prueba de abrasión – Desgaste promedio, milímetros. 

IS:12866-1989 (5)


Desgaste máximo en espécimen individual, milímetros. 

IS:12866-1989 (5)

Densidad (masa por unidad de área, kg/m2. 

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
Porcelanatos SHEINE, pisos y
revestimientos.
Tel: 011 4546-3876
porcelanatosheine@gmail.com
http://www.sheine.com.ar/


Láminas
1220x610x2mm
Piedra Natural
Flexible o
Pedraflex
CABA, ARGENTINA
Sheine

Pedra Flex
Tel: 4441-0693
info@pedraflex.com.ar
Skype: Piedraflex-Argentina
https://www.pedraflex.com.ar
/pedraflex.html

Laminado por rollo
1220x610x2mm


Revestimiento Flex
flexible ̈Pedra
Flex ̈
ARGENTINA

Pedra Flex
Doctor obra
(011) 69802106
doctorobra.saave@gm
ail.com
https://doctorobraonline.com.
ar/

Rollo/maLaminado por rollo
120cmx60cmx2mm
Doctor obra
ARGENTINA
Doctor obra
Piedrafina -Naturaleza Flexible
Tel: (+54) 11 3987-02235
hola@piedrafina.com.ar
https://piedrafina.com.ar/

Lámina
122cmx61 cmx3 mm

Piedra natural
flexible.

BUENOS AIRES, ARGENTINA

Piedrafina

Bibliografía

Proces1. Pedra flex 
https://www.pedraflex.com.ar/ 
2.Lugar y fecha de donde se originó y su creador -La voz 12 años. Héctor Magnone 
https://www.lavoz.com.ar/tendencias/laminas-flexibles-evolucion-de-piedra-natural/#:~:text=Seg%C3%BAn%20fa bricantes%20europeos%2C%20las%20l%C3%A1minas,una%20piel%20de%20piedra%20restante. 3.Anjasora, “Piedra natural flexible”. 
Piedra Natural Flexible · Láminas y Placas – Anjasora 
4. Pedraflex: el encanto de la piedra flexible -La voz 12 años. Ferrocons. 
https://www.lavoz.com.ar/espacio-de-marca/pedraflex-el-encanto-de-la-piedra-flexible/ 5. Stoneflex – Ficha Técnica.pdf 
https://distribuidoraimd.cl/Stoneflex%20-%20Ficha%20T%C3%A9cnica.pdf 
https://www.lavoz.com.ar/espacio-de-marca/pedraflex-el-encanto-de-la-piedra-flexible/ 6. Paradigma socio-tecnológico -ABC Tecnología. J.M. SÁNCHEZ 
https://www.abc.es/tecnologia/redes/abci-bill-gates-anticipo-seria-internet-1995-202005261056_noticia.html?ref =https%3A%2F%2Fwww.abc.es%2Ftecnologia%2Fredes%2Fabci-bill-gates-anticipo-seria-internet-1995-202005261 056_noticia.html 

Proyecto abrigA

Síntesis

El proyecto abrigA es un aislante termoacústico compuesto principalmente por fibras naturales de lana proveniente de ovejas, estas deben ser esquiladas, cuya lana una vez lavada y seca, se carda para que todas las fibras corran en la misma dirección. Esta capa extremadamente delgada de fibras de lana cardada se superpone varias veces para darle al producto final el espesor deseado. Estas capas están unidas mecánicamente para producir un rollo de aislamiento grueso y resistente. Es transpirable sin comprometer su eficiencia térmica, lo que permite que la vivienda respire ayudando a crear ambientes secos y a evitar daños en los materiales que conforman los cerramientos. Es un termorregulador natural gracias a sus propiedades higroscópicas. Cuando aumenta la temperatura exterior, las fibras se calientan, liberan humedad y se enfrían, refrescando el ambiente. Por el contrario, cuando disminuye la temperatura exterior las fibras se enfrían, absorben humedad y se calientan. 

Sus aplicaciones en la construcción son en el interior de cámaras de aislamiento térmico (trasdosados, falsos techos, bajo cubierta en desvanes y altillos), como material de relleno. En contacto con superficies de acabado como paredes, techos, muros cortina, etc

Contexto histórico, social y económico

– Su origen se da en Mongolia entre (1206 – 1368), el invento del termoaislante de la lana de oveja ha sido clave en las construcciones tradicionales de la cultura mongola a causa del clima frío extremo. Las yurtas, las viviendas portátiles utilizadas por los mongoles, empleaban fieltro y tejidos almohadillados de lana de oveja como capa aislante en sus paredes. La dependencia de materiales naturales en una población 

mayormente rural y nómada demostró la fiabilidad de la lana de oveja como aislante térmico en condiciones climáticas extremas. Sus principales propiedades son: la resistencia térmica, la absorción acústica y su capacidad autoextinguible. 

– El propósito original de la lana de oveja fue de proporcionar protección y calor a las personas, el propósito actualmente sigue siendo el mismo, la aplicación actualmente del material es en falsos techos, bajo cubiertas en desvanes y altillos y pueden aplicarse en superficies de acabado como muros y techos. Las investigaciones comenzaron a mediados del 2012 y AbrigA empezó a vender en el año 2019 ya contando con todos los ensayos reglamentarios. Los cambios fundamentales de la aparición del material fueron en la sustentabilidad e impacto, por ejemplo en el área social donde aumentaron la inclusión social, el cooperativismo y la agricultura familiar, en el área económica agregaron una nueva cadena de valor, un comercio justo, y una economía y desarrollo regional y en el área ambiental reduce el residuo sólido, menos emisiones GEI, menos energía y mayor biodiversidad y mejoramiento del suelo. 

El material se emplea en la construcción de viviendas, ayuda a regular la humedad de forma natural y mejora la eficiencia energética. Es un material relativamente no muy costoso ya que la materia prima que viene de la lana de oveja , es un problema para los pequeños productores ya que deben quemarla o enterrarla o darla en parte de pago por la esquila. 

– Este aislante es abundante en la tierra ya que proviene de la lana de las ovejas,siendo un material natural, sostenible, renovable, biodegradable,autoextinguible. Este material permite permite que un hogar se consuma menos de 4 veces la cantidad de energía necesaria para mantener el hogar a una temperatura cómoda, permitiendo así menos emisiones que incrementen el calentamiento global y sus consecuencias negativas para la poblacion y el medioambiente.La lana se renueva y crece anualmente , es una de las principales diferencias con los aislantes convencionales, derivados del petróleo o producidos con materiales abundantes pero no renovables como la arena.

Definición ciencia

Material compuesto principalmente por fibras naturales de lana proveniente de ovejas, estas deben ser esquiladas, cuya lana una vez lavada y seca, se carda para que todas las fibras corran en la misma dirección. Esta capa extremadamente delgada de fibras de lana cardada se superpone varias veces para darle al producto final el espesor deseado.

Procesamiento

Luego de la esquila se selecciona la lana gruesa y se somete un proceso de limpieza para eliminar impurezas, luego la lana se carda para tener las fibras de la misma en una sola dirección y crear una estructura uniforme para que después esta se compacte en rollos de 50mm de espesor, con una longitud de 12 metros y un ancho de 1,65 metros

Propiedades

Normas

NormaTítulo

Norma IRAM 11601:20021

Título: Aislamiento térmico de edificios. Métodos de cálculo.

Norma IRAM 11603

Título: Acondicionamiento térmico de edificios. Clasificación bioambiental de la República Argentina.

Norma 
UNE-EN 
12087:1997 / A1:20082

Título: Productos aislantes térmicos para aplicaciones en la edificación. Determinación de la absorción de agua a largo plazo por inmersión.

Norma 
UNE-EN 
1602:20133:

Título: Productos aislantes térmicos para aplicaciones en la edificación. Determinación de la densidad aparente.

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
Proyecto abrigA 
proyectoabriga@gmail.com +5491157082371 
https://abriga.com.ar


Rollo/manto
Manto Aislante de Lana de 
Oveja 
Termo-acústico

San Andrés, 
Buenos Aires, Argentina
Proyecto 
abrigA

Biocool 
info.biocool@gmail.com +5493513732220 
https://biocool.com.ar/

Rollo/manto


Bio Aislación 
termoacústica Natural 100% lana de oveja

Córdoba, 
Argentina

Biocool

Kalhufisa – aislación 
sustentable 
contacto@kalhufisa.cl 
+56 9 99684645 
https://kalhufisa.cl

Rollo/manto
Rollo aislación térmica lana de oveja
Chile
Kalhufisa

Sasmak Belartza 
sasmak@sasmak.com 
+34 678 84 58 51 
www.sasmak.com

Rollo/manto

Lana de oveja 
para 
aislamiento


San Sebastián, Guipúzcoa, 
España

Sasmak

Bibliografía

Proceso para llevar a cabo la fabricación del aislante: 
https://www.sheepwoolinsulation.com/about/production-process/ 
Propiedades y aplicaciones del producto: https://ecoesmas.com/aislamientos-naturales-lana-de-oveja/ 
Descripción del producto, ficha técnica y comunicación directa con “Proyecto abrigA”: https://abriga.com.ar – Arq. Alejandra Nuñez Berté. 
Propósito, aplicación, cambios fundamentales de la aplicación del producto, tipo de áreas donde se emplea: https://abriga.com.ar – Arq. Alejandra Nuñez Berté. 

Mecha de perforación para hormigón

Síntesis

Las mechas de perforación para hormigón son herramientas especializadas para perforar hormigón en buenas condiciones. El diseño presenta una punta de carburo de tungsteno que es muy dura y puede perforar el material sin dañarlo. Se combina con un cuerpo de acero resistente para proporcionar resistencia y durabilidad. El proceso de fabricación implica técnicas mecánicas de precisión para garantizar la calidad y confiabilidad del producto final. 

Estas brocas están fácilmente disponibles en mercados, ferreterías y en línea y vienen en varios tamaños y diseños para adaptarse a una variedad de necesidades de perforación. Se utilizan en una amplia gama de aplicaciones de construcción y renovación, como la instalación de anclajes, la perforación de agujeros para cables eléctricos o fontanería, y la colocación de fijaciones en estructuras de hormigón. Su capacidad para perforar materiales duros como el hormigón las hace indispensables en la industria de la construcción y la carpintería.

La mecha fue utilizada durante muchos años para diversos fines, como la creación de aplicaciones para incendios, carpinterías y mamposterías. La evidencia más antigua de brocas se remonta al año 35.000 A.C., cuando se usaba un palo afilado para hacer agujeros en materiales blandos. En la antigüedad, las brocas se fabricaban con pedernal, hueso o bronce. 

Fue inventada por el ingeniero Frederick Winslow Taylor en 1897, el cual ideó un acero especial (acero frío) capaz de soportar una utilización prolongada sin apenas desgaste. Lo consiguió añadiendo wolframio, lo que aumentaba el punto de fusión de la aleación hasta los 800 grados, y con ello su resistencia, eran ideales para la producción en serie, ya que se podían utilizar muchas veces sin que se despuntaran. 

La broca moderna, está compuesta de acero de alta velocidad o también conocido como carburo, fue patentada a fines del siglo XIX y se volvió ampliamente utilizada en el siglo XX para perforar materiales duros como la piedra. Actualmente, las brocas vienen en varios tamaños y se utilizan en muchas industrias, incluidas la construcción, la minería y la fabricación. 

Las brocas con punta de carburo se crearon a mediados del siglo XX. La fecha exacta es difícil de determinar, pero el uso de carburo en herramientas de corte se remonta a las décadas de 1920 y 1930. La innovación de las brocas con punta de carburo revolucionó la perforación al brindar una alternativa más duradera y eficiente a las brocas tradicionales de acero de alta velocidad. La mayor dureza y resistencia a la abrasión del carburo permitió un taladrado más rápido y preciso, especialmente en materiales duros como el hormigón.

Definición ciencia

Una mecha de perforación para hormigón típicamente se compone de un vástago de acero endurecido que proporciona la fuerza y la estabilidad necesarias durante la perforación. La punta está incrustada con carburo de tungsteno, un material extremadamente duro que permite perforar el hormigón resistente. Esta combinación de materiales asegura durabilidad y eficacia al perforar superficies de hormigón con precisión y eficiencia.

Procesamiento

1. Se selecciona el material adecuado para el vástago y para la punta. 

2. Se desbasta el acero para hacer varillas de acero afiladas. 

3. Pasa la varilla por una pulidora de 2 ruedas, la primera transforma la pieza liza en espirales longitudinales (acanaladuras), y la segunda hace bordes afilados en los canales y da forma de punta al extremo de la mecha. 

4. Ensamblaje de la punta con los insertos de carburo de tungsteno mediante soldadura u otros métodos de fijación mecánica. 

5. Se someten a tratamientos térmicos para mejorar su resistencia y durabilidad. 

6. Se hacen las pruebas de calidad para que la mecha cumpla con las dimensiones, resistencia y rendimiento.

Propiedades

Normas

NormaTítulo

ISO 5468:2006




Establece las dimensiones y la designación para el uso general 


ISO 5469:2014



Herramientas para la construcción – Brocas para martillos percutores y rotativos de uso en la construcción – Dimensiones

ASTM 
B212-99(2014)e1


Especificaciones para las mechas utilizadas en la mampostería


EN 520:2002


Proporciona requisitos para la fabricación y el marcado 

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
https://www.bosch-professi
onal.com/ar/es/brocas-279
0340-ocs-ac/materiales–hor
migon/
Por medio de distribuidores
oficiales o en locales
comerciales.
BROCAS PARA
MARTILLO
EXPERT SDS
PLUS-7X
ArgentinaBosh professional
https://ar.dewalt.global/pro
ductos/accesorios/accesorio

s-de-perforacion/accesorios-
de-concreto-y-mamposteria

/brocas-sds-plus
Por medio de la tienda online,
o distribuidores pequeños, o
grandes comercios como
easy, sodimac o mercadolibre.
Mecha sdsEstados UnidosDewalt
https://makita.com.ar/cate
gorias/accesorios/mechas-c
on-encastre-de-1-4-para-co
ncreto/Makita
Por medio de tienda online de
distribuidores oficiales, o por
medio de distribuidores en
sus locales.
Broca de
hormigón 14 x
550 / 600 mm,
T.C.T V-Plus

Japón
Makita

Bibliografía

https://coroimport.com/publicacion.php?id=79#:~:text=Es%20un%20compuesto%20sinterizado%2C%20carburo,u na%20mayor%20resistencia%20y%20durabilidad. (Fuente DMH)
https://www.mundodeportivo.com/elrecomendador/comparativas/broca-hormigon/#:~:text=Las%20brocas%20pa ra%20hormig%C3%B3n%20pueden,que%20las%20brocas%20de%20acero.
https://www.youtube.com/watch?v=rEMcU4QdX1s
https://www.wurth.com.ar/blog/brocas/que-brocas-se-usan-para-hormigon-tipo-tamano-y-uso/ (WURTH) https://quo.eldiario.es/ser-humano/a7750/la-broca/
https://setitfast.com/es/blogs/news/the-history-of-electric-drills-and-drill-bits
https://www.youtube.com/watch?app=desktop&v=jufylleNc5M (7)
https://www.facebook.com/RevistaElectrica/videos/fabricaci%C3%B3n-de-brocas/398454272278466/ (5) https://www.ferreteriaprincipat.com/los-diferentes-tipos-de-brocas-y-sus-caracteristicas/ (Propiedades)

Prenova / BubbleDeck

Síntesis

Se trata de esferas/discos huecos, compuestos de polietileno de alta densidad (PEADR/RHDPE), un polímero termoplástico reciclado, con un espesor mínimo de 1 milímetro (±10%). Se fabrican con un método de inyección por soplado en matrices (similar al proceso de fabricación de botellas plásticas), manteniendo el aire en su interior. Estas esferas/discos se utilizan en la construcción de elementos estructurales como losas de entrepisos y cubiertas, plateas y losas sobre terreno, y cumplen la función de reemplazar el volumen de cierto porcentaje de hormigón y acero con aire, ahorrando materiales, alivianando la estructura, mejorando su resistencia y funcionando como un buen aislante térmico y acústico. Se producen en diferentes diámetros y alturas, dependiendo del espesor de las losas a las que están destinadas, sus solicitaciones o las luces a cubrir, ya sean entre apoyos o en voladizo, dando la posibilidad de construir grandes luces sin la necesidad de vigas. [1] 

El producto fue patentado mundialmente por el arquitecto argentino Ricardo Levinton, quien fue pionero en este campo tras haber dedicado más de 40 años de su vida al estudio de los sistemas y las estructuras generados por la naturaleza, con el fin de trasladar ese conocimiento al ámbito de la construcción, buscando realizar una biomímesis para un sistema constructivo más eficiente y sustentable. Esto lo llevó a desarrollar sus sistemas constructivos Prenova. [1] 

El sistema constructivo de losas alivianadas con esferas o discos plásticos surgió en Argentina. Si bien no se encuentra especificado en qué año se llevó a cabo esta investigación, se sabe que fue empleado por primera vez en 1997 [3], y difundido a partir de los años 2000. Fue llevado a cabo por el arquitecto Ricardo Levinton, quien se vio interesado por los sistemas estructurales presentes en la naturaleza, específicamente en la composición de los huesos, esqueletos y estructuras de nido de abeja, de alta resistencia y ultralivianos debido a la presencia de aire en su interior, con el propósito de trasladar estos conceptos a la construcción para desarrollar proyectos sustentables. Él hace su analogía observando el corte de un hueso de fémur, donde se diferencian zonas macizas donde aparecen tensiones de corte y punzonado, y zonas aligeradas donde están presentes tensiones de flexión. 

Esta investigación le permitió reproducir este sistema en estructuras de hormigón armado, empleando esferas y discos como burbujas de aire, otorgando una resistencia homogénea en la estructura y ahorrando una gran cantidad de material. 

Esto llevó a la fundación de Prenova, junto con la arquitecta Fortuna Levinton, aplicando esta innovación tecnológica en la arquitectura. Luego se incorporarían la arquitecta Luciana Levinton, la diseñadora industrial Carolina Levinton, el licenciado Martín Levinton y el arquitecto Diego Sáez. [2] 

Habiendo desarrollado hasta la actualidad más de un millón de metros cuadrados sustentables y producido más de diez millones de discos y esferas de plástico reciclado, el producto fue patentado mundialmente y recibió una aprobación para todo el país por la Secretaría de Vivienda, el premio de la 17ª edición de Innovar 2022 otorgado por el Ministerio de Ciencia, Tecnología e Innovación y una certificación LEED (Líder en Eficiencia Energética y Diseño sostenible). [4] 

La idea fue muy innovadora por su aporte a la economización de la construcción y la reducción del impacto ambiental, teniendo un ahorro promedio de un 30% en hormigón y un 20% en acero, lo cual hace que un edificio que utilice este sistema pese un 60% menos, teniendo un mejor comportamiento en zonas sísmicas, y reduciendo significativamente las emisiones de dióxido de carbono. Por esto, este sistema fue difundido mundialmente por la búsqueda actual que se tiene de reducir los costos y tiempos de construcción, así como las emisiones de gases de efecto invernadero que contribuyen al calentamiento global. 

La industria que produce este material saca provecho de su propiedad de ser altamente reciclable, por lo que, a pesar de tratarse de un plástico, no tiene un impacto ambiental significativo siempre y cuando la fuente de producción sea el reciclaje del mismo. Además, su objetivo es reducir el impacto ambiental de la construcción tradicional, ya que cada 10.000 m2 construidos con este sistema se ahorran 1.000 m3 de hormigón y 700 m3 de contrapisos, que equivalen a 400 toneladas de dióxido de carbono que no se liberarán. El único gasto de energía y recursos se encuentra en su procesamiento, pero no se lo asocia a un uso muy elevado. [1]

Definición ciencia

Está compuesto por una combinación de: 

El polietileno de alta densidad es un polímero termoplástico obtenido de la polimerización del etileno, donde las moléculas apenas presentan ramificaciones, dando como resultado una alta densidad. También es conocido como HDPE (High Density Polyethylene) ó PEAD (Polietileno de Alta Densidad), y le corresponde el código de identificación plástico 2. Se trata de un material incoloro y casi opaco, fácil de procesar mediante inyección o extrusión, y reciclable mediante métodos térmicos y mecánicos. [5]

Procesamiento

En la fabricación del polietileno de alta densidad, se comienza con el proceso de “cracking”, donde se aplica calor al petróleo crudo o gas natural, descomponiéndolo y produciendo un hidrocarburo de etileno. Mediante un proceso de adición, las moléculas del gas etileno se unen para formar largas cadenas llamadas polímeros, en este caso polietileno, y es de alta densidad ya que, a diferencia del polietileno de baja densidad, no se forman grandes ramificaciones en las cadenas poliméricas. En este caso, al tratarse de un termoplástico reciclable, se utilizan desechos compuestos del mismo material para ser fundidos nuevamente y producir las esferas y discos, mediante un método de inyección de aire a presión llamado soplado, donde se colocan tubos del material dentro de un molde o matriz, para luego tomar la forma de éste gracias a la presión del aire inyectado. [6] [7] [8]

Propiedades

Normas

NormaTítulo

CIRSOC 200 [9]



Reglamento Argentino de Tecnología del Hormigón 

INPRES-CIRSOC 103 [10]


Reglamento Argentino para Construcciones Sismorresistentes 
EN 1992-1-1:2004 [11]
Eurocode 2: Design of concrete structures – Part 1-1 

ACI 318-19 [12] [13]

Building Code Requirements for Structural Concrete 

ACI 421.1R-20 [12] [14]
Guide for Shear Reinforcement for Slabs 

BS 8110-1-1997 [15]

Structural Use of Concrete 

AS 3600:2018 [16]

Concrete Structures 
NTC-SCA-04 [17] [18] NTC-C-04 [17] [18] 
NTC-S-04 [17] [18]

Normas Técnicas Complementarias Sobre Criterios y Acciones para el Diseño Estructural de las Edificaciones Normas técnicas complementarias para Diseño y Construcción de Estructuras de Concreto Normas técnicas complementarias para Diseño por Sismo 
NTC-V-04 [17] [18]
Normas técnicas complementarias para Diseño por Viento 

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
Prenova
contacto@prenova.com.ar
Húsares 2477, C1428 CABA
https://www.prenovaglobal.co
m
Discos y esferas plásticos
por unidad según cálculo.
Esferas y
discos de
material
reciclado
ArgentinaPrenova
BubbleDeck
(011) 4716-4288
(011) 4759-0129
(011) 4734-6380
Olavarría 3943, B1678HV
Caseros
http://www.bubbledeck.com.ar
Discos y esferas plásticos
por unidad según cálculo,
paneles para losas
prefabricadas y prelosas.
Esferas y
discos de
material
reciclado
ArgentinaBubbleDeck
Klarea
+(55) 2648 5583
Av. Benjamín Franklin 230,
Piso 3 Hipódromo,
Cuauhtémoc, C.P. 06100
CDMX
https://www.klarea.mx/bbd
Losas prefabricadas con
esferas.
Losa BBD
México
BubbleDeck
Guten S.A.
Junín 191, S2013 Rosario
https://www.gutensa.com.ar
Discos y esferas plásticos.Esferas y
discos de
material
reciclado

Argentina
BubbleDeck
BDM
hola@bubbledeckmexico.com
Alfredo del Mazo s/n
Col. México Nuevo, C.P. 52966
Atizapán de Zaragoza, EdoMex
https://www.bubbledeckmexic
o.com
Losas prefabricadas con
esferas.
Losa BDMMéxicoBubbleDeck
Danstek
hola@danstek.com
Alfredo del Mazo S/N
Col México Nuevo, C.P. 52966
Atizapán de Zaragoza, EdoMex
https://danstek.com
Losas prefabricadas con
esferas.
Losa DanstekMéxicoBubbleDeck

Bibliografía

Proveedor de muestra (obtenida el 05/04/2024): Prenova 
https://www.prenovaglobal.com 
[1] Folleto técnico Prenova – 2024 (Argentina) 
Obtenido el 27/03/2024 
https://www.prenovaglobal.com/index.php/es/prenova-sistemas-constructivos-sustentables/ 
[2] Servicio Informativo de la Construcción, 11/08/2014: “Conocé el sistema que revolucionó la sustentabilidad” Obtenido el 10/04/2024 
https://sicdigital.com.ar/sic/conoce-el-sistema-que-revoluciono-la-sustentabilidad/ 
[3] Redacción Clarín, 09/09/2020: “Un edificio con tecnología innovadora y sustentable” Obtenido del 11/04/2024 
https://www.clarin.com/arq/arquitectura/edificio-tecnologia-innovadora-sustentable_0_-bIkuwYHF.html 
[4] Argentina, Ministerio de Ciencia, Tecnología e Innovación: “Innovar: #17 Concurso Nacional de Innovaciones (2022)” 
Obtenido el 13/04/2024 
https://www.innovar.mincyt.gob.ar/ 
[5] Blog Envaselia: “Qué es el polietileno de alta densidad HDPE ó PEAD” 
Obtenido el 27/03/2024 
https://www.envaselia.com/blog/que-es-el-polietileno-de-alta-densidad-hdpe-o-pead-id18.htm 
[6] Blog Maxipet: “Ventajas y desventajas del polietileno de alta densidad” 
Obtenido el 11/04/2024 
https://maxipet.net/blog/ventajas-y-desventajas-del-polietileno-de-alta-densidad 
[7] Rojas, T., 18/08/2023: “Todo sobre el polietileno de alta densidad (HDPE): usos, ventajas y mercado actual” Obtenido el 12/04/2024 
https://www.plastico.com/es/noticias/todo-sobre-el-polietileno-de-alta-densidad-hdpe-usos-ventajas-y-mercado-actual 
[8] Mecyplastec, 10/02/2024: “HDPE: usos, características y beneficios del polietileno de alta densidad” Obtenido el 13/04/2024 
https://mecyplastec.es/hdpe-usos-caracteristicas-y-beneficios-del-polietileno-de-alta-densidad/ 
[9] Instituto Nacional de Tecnología Industrial (INTI): “Reglamento CIRSOC 200-23: Reglamento Argentino de Tecnología del Hormigón” 
Obtenido el 13/04/2024 
https://www.inti.gob.ar/assets/uploads/files/cirsoc/04-Reglamentos-en-discusion-publica-nacional/CIRSOC200-23-regl amento.pdf 
[10] Instituto Nacional de Tecnología Industrial (INTI): “INPRES-CIRSOC 103: Reglamento Argentino para Construcciones Sismorresistentes” 
Obtenido el 13/04/2024 
https://www.argentina.gob.ar/interior/secretaria-de-planificacion-territorial-y-coordinacion-de-obra-publica/Reglamen tos-INPRES-CIRSOC#:~:text=Reglamento%20INPRES-CIRSOC%20103%20-%20Reglamento%20Argentino%20para%20Con strucciones,Parte%20III%20-%20Construcciones%20de%20mamposte%20%285.5%20Mb%29 
[11] European Commission: “EN 1992-2 (2005): Eurocode 2: Design of concrete structures” Obtenido el 13/04/2024 
https://eurocodes.jrc.ec.europa.eu/EN-Eurocodes/eurocode-2-design-concrete-structures 
[12] Arq. Ana Karen Segura García, septiembre 2017: “Manual de Proceso Constructivo de Losas Bubble Deck (BDM®) para Edificaciones”, para la Facultad de Ingeniería de la Universidad Nacional Autónoma de México Obtenido el 12/04/2024 
http://www.ptolomeo.unam.mx:8080/xmlui/bitstream/handle/132.248.52.100/13538/Manula%20De%20Proceso%20C onstructivo%20De%20Losas%20Bubble%20Deck%20%28BDM%29%20Para%20Edificaciones.pdf?sequence=1&isAllowe d=y 
[13] American Concrete Institute: “ACI 318-19(22) – Building Code Requirements for Structural Concrete” Obtenido el 13/04/2024 
https://www.concrete.org/tools/318buildingcodeportal.aspx.aspx 
[14] American Concrete Institute: “ACI 421.1R-20 – Guide for Shear Reinforcement for Slabs” Obtenido el 13/04/2024 
https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&id=51723516 
[15] The British Standards Institution: “BS 8110 – Structural use of concrete” 
Obtenido el 13/04/2024 
https://landingpage.bsigroup.com/LandingPage/Series?UPI=BS%208110 
[16] Standards Australia: “AS 3600:2018 – Concrete Structures” 
Obtenido el 13/04/2024 
https://www.standards.org.au/standards-catalogue/standard-details?designation=as-3600-2018 
[17] Danstek, 2016: “BDM® Losa Prefabricada: Manual de Diseño y Cálculo Estructural” 
Obtenido el 13/04/2024 
https://bubbledeckmexico.com/documents/DANSTEK_manual_disen%CC%83o-calculo-estructural.pdf 
[18] Consejería Jurídica y de Servicios Legales de la Ciudad de México: “Normas Técnicas Complementarias Sobre Criterios y Acciones para el Diseño Estructural de las Edificaciones”, “Normas técnicas complementarias para Diseño y Construcción de Estructuras de Concreto”, “Normas técnicas complementarias para Diseño por Sismo”, “Normas técnicas complementarias para Diseño por Viento”, En: Gaceta Oficial de la Ciudad de México Obtenido el 13/04/2024 
https://consejeria.cdmx.gob.mx/gaceta-oficial 
[19] Araújo, J. R.; Waldman, W. R.; De Paoli, M. A. (01/10/2008): “Thermal properties of high density polyethylene composites with natural fibers: Coupling agent effect”. En: Polymer Degradation and Stability Obtenido el 10/04/2024 
[20] Askeland, Donald R. (2016): “The science and engineering of materials” 
Obtenido el 10/04/2024 
[21] Colfibras: Ficha Técnica Polietileno 
Obtenido el 14/04/2024 
https://www.colfibras.com/userfiles/fichatecnica-polietileno.pdf 


Sika Grout 212

Síntesis

Es un material de construcción versátil ampliamente utilizado en proyectos de ingeniería civil y construcción. Su composición incluye una mezcla de cemento Portland, agregados seleccionados, aditivos especiales y polímeros modificados. Estos componentes proporcionan propiedades de fluidez controlada, alta resistencia a la compresión y excelente adherencia a sustratos diversos. 

El método de fabricación implica un proceso de mezclado cuidadoso y controlado para garantizar una distribución uniforme de los ingredientes y una calidad consistente del producto final. Se produce en instalaciones especializadas bajo estrictos estándares de calidad y cumpliendo con las normativas y regulaciones pertinentes. 

Este material está disponible en forma de polvo seco, lo que facilita su transporte y almacenamiento. Se puede mezclar con agua en el lugar de trabajo para formar una pasta homogénea de fácil aplicación. Se utiliza en una amplia gama de aplicaciones, como relleno de huecos, nivelación de superficies, anclajes de maquinaria, reparación de hormigón, y relleno de cavidades en estructuras de concreto y acero. Su capacidad para fluir y llenar espacios reducidos lo hace ideal para aplicaciones donde se requiere un material de relleno resistente y duradero.

El origen se remonta a las instalaciones de investigación y desarrollo de Sika en Suiza, donde se llevó a cabo el proceso de formulación y pruebas para crear este mortero premezclado. Su descubrimiento se basa en la innovación debido a la combinación de materiales y aditivos para producir un mortero con propiedades específicas, como alta resistencia, fluidez controlada y capacidad de adherencia mejorada. Estas propiedades novedosas lo convierten en una opción preferida en la industria de la construcción para aplicaciones de relleno, anclaje y nivelación. 

El Sika Grout 212 tuvo su origen en Suiza, en los laboratorios de investigación y desarrollo de Sika AG, una empresa líder en productos químicos para la construcción. Surgió como resultado de décadas de investigación en ingeniería de materiales y la necesidad de desarrollar un material versátil y de alto rendimiento para aplicaciones en la industria de la construcción. En sus inicios, hacia finales del siglo XX, su propósito principal era ofrecer una solución eficaz y duradera para rellenar huecos, nivelar superficies irregulares y anclar maquinaria en aplicaciones industriales y comerciales. Sin embargo, con el tiempo, su versatilidad y rendimiento demostraron ser aplicables en una variedad de campos, incluyendo la construcción civil, la ingeniería estructural, la minería, la industria petroquímica y la reparación de infraestructuras. 

Comenzó a producirse y utilizarse comercialmente en un período de rápido avance tecnológico y desarrollo en la industria de la construcción. En ese momento, el paradigma socio-tecnológico estaba marcado por un enfoque creciente en la eficiencia, la durabilidad y la sostenibilidad en la construcción de infraestructuras. La aparición de este material representó un cambio fundamental al ofrecer una alternativa confiable y de alto rendimiento a los métodos tradicionales de relleno y nivelación. introdujo cambios fundamentales en la forma en que se abordan los desafíos de construcción y reparación. Su formulación única, que combina cemento Portland, agregados seleccionados y polímeros modificados, ofreció una alternativa eficaz y duradera a los métodos tradicionales de relleno y anclaje. 

En cuanto a su costo, puede que su precio sea más alto en comparación con alternativas más básicas. Sin embargo, su durabilidad y rendimiento superior a menudo justifican su costo en proyectos donde se requiere un material de alta calidad y confiabilidad a largo plazo. 

utiliza ingredientes comunes y abundantes, que están ampliamente disponibles en la tierra. Sin embargo, su fabricación y aplicación pueden generar cierto impacto ambiental debido al consumo de energía y recursos naturales durante el proceso de producción y transporte. 

Aunque es posible reciclar parcialmente algunos de sus componentes, como el cemento, la mezcla completa puede ser difícil de reciclar íntegramente debido a la combinación de ingredientes y aditivos. Además, la producción de derivados utilizables en su fabricación puede requerir procesos que generen emisiones de gases de efecto invernadero y otros contaminantes. 

La explotación del material puede causar problemas ambientales, como la degradación del suelo y la vegetación debido a la extracción de materias primas. Además, la producción de cemento Portland, uno de los componentes principales del grout, está asociada con emisiones significativas de dióxido de carbono (CO2), contribuyendo al cambio climático y la acidificación del aire.

Definición ciencia

Está compuesto por una combinación de: 

Cemento Portland, es el componente principal del SikaGrout-212 y proporciona la resistencia mecánica a }endurecer, Áridos seleccionados, estos son agregados minerales, como arena, grava o piedra triturada, que se mezclan con el cemento para proporcionar volumen y mejorar las propiedades mecánicas del mortero, como la resistencia a la compresión, aditivos especiales y agregados. Aditivos especiales, SikaGrout-212 puede contener aditivos específicos proporcionados por el fabricante, como plastificantes, reductores de agua, retardadores de fraguado, entre otros. Fibras, en algunos casos, se pueden incluir fibras de refuerzo, como fibras de polipropileno o fibras de acero, para mejorar la resistencia a la tracción y la capacidad de absorción de energía del mortero. Agua, se utiliza agua limpia para mezclar todos los componentes y activar la hidratación del cemento, lo que permite que el mortero endurezca y adquiera resistencia.

Procesamiento

El proceso de procesamiento del Sika Grout 212 comienza con la extracción de las materias primas necesarias para su fabricación, como el cemento Portland, los agregados seleccionados y los polímeros modificados. Estos materiales son recolectados de canteras, minas y fuentes naturales. 

Una vez obtenidas las materias primas, estas se transportan a las instalaciones de producción, donde se lleva a cabo el proceso de mezclado y formulación. En esta etapa, los ingredientes se combinan en proporciones específicas y se someten a un proceso de mezclado controlado para garantizar una distribución uniforme de los componentes y obtener la composición deseada. 

La mezcla resultante se seca y se tritura para obtener un polvo fino, que es el estado final del producto antes de su envasado y distribución. Durante este proceso, se pueden agregar aditivos especiales para mejorar ciertas propiedades del grout, como la fluidez, la resistencia y la adherencia. 

Una vez envasado, está listo para su distribución y uso en obras de construcción y reparación. Se suministra en bolsas o contenedores adecuados para su transporte y almacenamiento seguro.

Propiedades

Normas

NormaTítulo
IRAM 1715
Mortero pre elaborado de cemento portland para fijaciones, anclajes y rellenos. Requisitos. 
IRAM 1622

Determinación de resistencias mecánicas 
ASTM C939
Método de prueba estándar para Flujo de lechada para concreto de agregado prepuesto (método de cono de flujo)
ASTM C1107
Especificación estándar para echada de cemento hidráulico empaquetada seca 

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
Centro Maipu 
(5411)4795-7319 
https://centromaipu.com.ar

Bolsas de 25kg Sika Grout 212ArgentinaSika
PINTURERIAS REX
Bolsas de 25kg Sika Grout 212ArgentinaSika
PRESTIGIOBolsas de 25kg Sika Grout 212
Argentina
Sika
ROSMARBolsas de 25kg Sika Grout 212
Argentina
Sika

Bibliografía

https://per.sika.com/dam/dms/pe01/h/sikagrout_-212.pdf
https://arg.sika.com/es/sobre-nosotros/historia.html#Anchor1
https://arg.sika.com/es/construccion/reparacion-del-hormigon/morteros-de-reparacion-predosificados/sikagrout212.html

https://arg.sika.com/dam/dms/ar01/x/sikagrout-212.pdf
https://ecu.sika.com/dam/dms/ec01/7/sikagrout_-212.pdf
https://esp.sika.com/dam/dms/es01/e/sikagrout-212-fluid.pdf
https://col.sika.com/dms/getdocument.get/00b36556-a656-3209-bb1c-25ad0e4a3b58/Metodo%20de%20Aplicaci ón%20de%20Grouts%202016.pdf


Sika Top Seal 107 Flex

Síntesis

Contexto histórico, social y económico

Es un revestimiento impermeable flexible, de 2 componentes a base de cemento modificado con polímeros que poseen una alta capacidad de proteger las estructuras contra la penetración de agua. Se utiliza para: 

● Impermeabilizar y prevenir filtraciones a presión de agua positiva o negativa, en exteriores o interiores, sobre hormigón, morteros y mampostería. 

● Reservorios de agua, tanques y recipientes. Piletas de natación y estanques. ● Sótanos y subsuelos. Fosas de ascensor. 

● Muros de contención y submuraciones. Baños y cocinas. 

● maceteros

Sikatop Seal 107 Flex es un producto desarrollado y fabricado por Sika ubicada en Baar, Suiza, una empresa de productos químicos para la construcción. Fue fundada en 1910 por Kaspar Winkler. 

El desarrollo implica la colaboración de ingenieros, químicos y expertos en materiales que trabajan en conjunto para diseñar productos que cumplan con los estándares de rendimiento y calidad requeridos para su uso en aplicaciones específicas, como la impermeabilización y el sellado en la construcción. El resultado es un sellador y recubrimiento impermeabilizante de dos componentes diseñado para proteger y sellar superficies en aplicaciones de construcción. 

El propósito original es proporcionar una solución versátil y efectiva para mejorar la durabilidad y la resistencia al agua de diversas estructuras y superficies en la construcción. 

Teniendo en cuenta los avances tecnológicos y las demandas del mercado, es probable que se haya desarrollado en una época más reciente, probablemente en las últimas décadas, en respuesta a las necesidades cambiantes de la industria de la construcción. 

La aparición del material introdujo cambios fundamentales en el campo de los materiales para la construcción, particularmente en lo que respecta a selladores y productos de impermeabilización. Algunos de estos cambios incluyen: 

● Flexibilidad: Permite adaptarse a movimientos y deformaciones en las estructuras sin agrietarse ni perder su capacidad de sellado. 

● Resistencia al agua: Proporciona una barrera efectiva contra la penetración del agua, protegiendo así las superficies contra la humedad y la infiltración de líquidos. 

● Adherencia: Se adhiere fuertemente a una variedad de sustratos, incluyendo hormigón, mortero, mampostería, metal y madera. 

● Durabilidad: Está formulado para resistir la intemperie, los rayos UV y otros factores ambientales adversos, manteniendo su integridad y rendimiento a lo largo del tiempo. 

Las preocupaciones ambientales pueden surgir principalmente durante la fabricación, el uso y la eliminación. Algunos puntos a considerar incluyen: 

● Fabricación: Durante el proceso de fabricación, pueden generarse emisiones y residuos que contribuyan a la contaminación del aire, el agua y el suelo. 

● Uso: Durante la aplicación y el uso en proyectos de construcción, es posible que se liberen emisiones volátiles o residuos que podrían contribuir a la contaminación del aire o el agua en el sitio de trabajo. ● Eliminación: Al final de su vida útil, puede requerir una eliminación adecuada para evitar la contaminación del medio ambiente.

Definición ciencia

Está compuesto por una combinación de: 

1. Resinas de polímero: Proporcionan la capacidad de flexibilidad y adherencia a la superficie. 2. Cemento Portland: Ayuda a fortalecer la capa impermeable y proporcionar resistencia mecánica. 

3. Aditivos especiales: Suelen agregarse para mejorar características específicas del producto, como la resistencia a la intemperie, la adherencia y la durabilidad.

Procesamiento

Extracción de materias primas: Obtención de polímeros, agregados y aditivos necesarios. Procesamiento: Trituración, mezclado y preparación de los ingredientes. 

Mezclado: Homogeneización de la mezcla. 

Fabricación: Moldeado, extrusión u otro proceso para dar forma al producto. 

Embalaje: Empaquetado adecuado para almacenamiento y distribución. 

Control de calidad: Pruebas para garantizar cumplimiento con estándares. 

Almacenamiento y distribución: Preparación y envío del producto a los clientes.

Propiedades

Normas

NormaTítulo
EN 196-1Resistencia a compresión
ISO 9001
Gestión de la Calidad
ISO 14001
Gestión Ambiental
OHSAS 18001
Gestión s&so

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
EASY
Presencial/online
Argentina
PINTURERIAS REX
Presencial/online
Argentina
PRESTIGIOPresencial/online
Argentina
ROSMARPresencial/online
Argentina

Bibliografía

https://www.youtube.com/watch?v=_0VYn-IqRv4
(SikaTop® Seal -107 KH – leading cementitious waterproofing in Cambodia)
Nos brindaron información por mail y presencialmente en los diferentes distribuidores.

Malla de acero recubierta en PVC

Síntesis

Contexto histórico, social y económico

La malla de acero cuadrada recubierta en PVC es un tipo de malla metálica que combina la resistencia del acero galvanizado con la protección proporcionada por el recubrimiento de PVC, un polímero que mejora su resistencia a la corrosión y la oxidación. 

El proceso de fabricación de esta malla comienza con el trefilado del alambre de acero, donde se reduce su sección y se estira para aumentar su resistencia. Luego, se emplean máquinas para tejer el alambre y formar la malla. Finalmente, se aplica un recubrimiento de PVC para brindar protección contra la corrosión. Al terminar la fabricación del material, es necesario realizar una inspección de calidad para poder comprobar que cumplen con su respectiva función en términos de resistencia, dimensiones y acabados. Esta malla tiene una gran variedad de aplicaciones en la actualidad, incluyendo la protección de puertas y ventanas, cercas para jardines y campos verdes, así como jaulas para animales, entre otros usos. Su durabilidad y resistencia la convierten en una opción para diversas necesidades de seguridad y protección.

Los orígenes de la malla de acero se remontan al siglo XIX en el Reino Unido, donde John French Golding patentó este sistema en 1871, convirtiéndose en el inventor de esta primera variante de malla. En ese momento, su principal uso era la construcción de estructuras de hormigón, aprovechando su flexibilidad y resistencia. El descubrimiento de la malla fue el resultado de un proceso gradual de desarrollo tecnológico a lo largo del tiempo. 

En el siglo XX, con los avances en la metalurgia y la química, se comenzó a cubrir la malla con PVC para ciertos usos específicos. Esto otorgó a la malla de acero resistencias que anteriormente no poseía. El PVC proporciona una capa protectora que mejoró su durabilidad, resistencia a la corrosión y la hizo más adecuada para diversas aplicaciones. 

La malla de acero recubierta en PVC ha evolucionado desde sus inicios en la construcción hasta convertirse en un elemento versátil utilizado en diversos campos, como la arquitectura, la ingeniería civil, la industria automotriz, la agricultura y la fabricación. Su flexibilidad, resistencia, capacidad para adaptarse a diferentes contextos y las propiedades adicionales aportadas por el recubrimiento de PVC la han convertido en un componente esencial en muchas estructuras y productos modernos. 

Dicho material se utilizó inicialmente para delimitar terrenos pero fue evolucionando hacia una gran variedad de aplicaciones gracias a que es un material fácil de instalar, y tiene resistencia y protección a la corrosión por su recubrimiento. Hoy en día, es una solución adaptable que se emplea para asegurar puertas y ventanas, construir jaulas para animales, cercar jardines e incluso se utiliza como un elemento estético para los hogares mediante rejas y muebles de jardín. Su utilidad no solo se limita a lo estético, sino que también se usa para usos perimetrales de instalación, refuerzo de muros, control de erosión y protección de maquinarias. 

Es un material novedoso gracias a su combinación de características. La resistencia del acero a la tracción, compresión e impactos se ve protegida por el recubrimiento del PVC que logra protegerla de la corrosión, oxidación y rayos UV. Esta combinación, además, logró que el mantenimiento que requiere sea bajo ya que solo requiere una limpieza ocasional. 

La malla de acero cuadrada recubierta en PVC, fabricada con hierro, uno de los elementos más abundantes en la Tierra , es un material versátil y duradero. Aunque no se especifica su reciclabilidad, el acero es generalmente reciclable, lo que podría aplicarse a este producto. En su fabricación se utilizan derivados como el zinc para la galvanización y el PVC para el recubrimiento. Sin embargo, la explotación del acero presenta desafíos. La producción de acero puede generar contaminación del aire, agua y suelo, y contribuir al calentamiento global. A pesar de su utilidad, la malla de acero cuadrada recubierta en PVC está asociada a una alta contaminación debido a los procesos de producción del acero.

Definición ciencia

Los elementos que conforman la malla de acero recubierta en pvc son el acero y el policloruro de vinilo. El acero es una aleación conformada por hierro(metal) y un porcentaje de carbono del 0,06%(8). Mientras el material que lo cubre llamado pvc se encuentra conformado por una combinación química de carbono, hidrógeno y cloro. Proviene del petróleo bruto(43%) y de la sal (57%).(16)

Procesamiento

En primer lugar, el acero se obtiene al mezclar dos elementos, carbono y hierro a altas temperaturas(arriba de 2600 F°)(11). El carbono se puede encontrar en estado natural, a contrario del hierro que se obtiene mediante aleaciones con otros metales(12)(13). Para poder obtener el PVC primero se craquea el petróleo para poder romper los enlaces químicos y así, conseguir diferentes propiedades. Después de realizar dicho paso, se obtiene etileno que se procede a mezclar con el cloro producido por el cloruro de sodio y se consigue etileno diclorado. Mediante un proceso de polimerización, se llega a obtener el cloruro de polivinilo (PVC)(14). Ya obtenido los elementos, se comienza con la fabricación del alambre de acero de alta calidad. Luego se somete a un proceso de galvanización que consiste en sumergir el elemento de crisol fundido a 450°C con el objetivo de evitar la oxidación y corrosión que puede sufrir el acero. Al completar el proceso de galvanización, se empieza a tejer el alambre para conformar la malla cuadrada con unas medidas que pueden ser de 10x10mm o 25x25mm con un diámetro del alambre que puede ser de 1mm o 1,5mm. Cuando ya se termina de realizar la malla cuadrada, se procede a recubrir de pvc para poder mejorar su resistencia a la corrosión, impacto y abrasión.(15)

Propiedades

Normas

NormaTítulo
ISO 9044Tela metálica tejida industrial. Requisitos técnicos y pruebas.(1)
ISO 12076 
ISO 8095
Determinación del módulo de elasticidad.(2) 
Tejidos recubiertos en pvc para lonas.(3)
ISO/TR 
9769:2018
Acero y hierro.(4)
IRAM-IAS 
U500-06
Normas de Fabricación.(5)
CIRSOC 108Reglamento Argentino de Cargas de Diseño para Estructuras durante su Construcción.(6)

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
Grupo AgroRedes Polcom Tel: (+5411) 4766-0275 Tel ventas: (+5411) 
3220-3099 
Contacto: 
ventas@grupo-ap.com.ar Web: 
https://grupo-ap.com.ar/
Venta por rollo cerrado. No 
Malla 
fraccionan el producto.
cuadrada con pvc
Malla cuadrada con pvcArgentinaAgroRedes Polcom
Bluemat S.A. 
Tel: +5411 
5199-6449/+54911 
3369-3798 
Web: 
https://bluemat.com.ar/
Aberturas: 15 x 15, 25 x 25 y 
Mallas 
50 x 50. Se trabajan otras 
soldadas de 
medidas sobre pedido.
alambre con 
pvc
Mallas soldadas de alambre con pvcSuizaCECROPS
Icomallas S.A.
Tel:3128138616
Contacto:
ventasinternacionales@ico
mallas.com
Web:
https://icomallas.com/
Unidad: 5mt (las unidades se
despachan en metros
continuos hasta 30mt)
Malla
electrosoldada
recubierta en
PVC 3/4Pulg.
ColombiaIcomallas
Xiamen Yujinxiang Industry
and Trade Co.
Tel: +86-592-6696669
Contacto:
miachen@yjxfence.com
Web:
https://es.yjxfence.com/
Venta por rollos de 30 a
50 metros.
Malla recubierta de pvcChinaXiamen
Yujinxian

Bibliografía

1)ISO, Norma. 
Obtenida el 16 de abril del 2024 de https://www.iso.org/standard/62411.html 
2)ISO. Norma. 
Obtenida el 16 de abril del 2024 de https://www.iso.org/standard/32197.html 
3)ISO. Norma. 
Obtenida el 16 de abril del 2024 de https://www.iso.org/standard/15134.html 
4)ISO. Norma. 
Obtenida el 16 de abril del 2024 de https://www.iso.org/standard/74711.html 
5)ArcelorMittal. Norma. 
Obtenida el 16 de abril del 2024 de 
https://www.acindar.com.ar/wp-content/uploads/2020/09/Catalogo_Construccion_civil.pdf 6)INTI. Norma. 
Obtenida el 16 de abril del 2024 de 
https://www.inti.gob.ar/areas/servicios-industriales/construcciones-e-infraestructura/cirsoc/reglamentos 7)Construmática. El acero de la malla. 
Obtenida el 16 de abril del 2024 de 
https://www.construmatica.com/construpedia/El_Acero_de_la_Malla#:~:text=El%20m%C3%B3dulo%20de%20ela sticidad%20longitudinal,de%20210%20kN%2Fmm2. 
8)Grupo AgroRedes Polcom, Ficha Técnica. 
Obtenida el 10 de abril del 2024 de 
https://grupo-ap.com.ar/wp-content/uploads/2017/03/MALLA-CUADRADA-CON-PVC.pdf 9)Universidad de Barcelona. Policloruro de vinilo. 
Obtenida el 16 de abril del 2024 de 
http://www.ub.edu/cmematerials/es/content/policloruro-de-vinilo#:~:text=Acetileno%2C%20%C3%A1cido%20clo rh%C3%ADdrico%2C%20cloro%20y,vinilo%20y%20cloruro%20de%20etileno. 
10) Material Properties org. 
Obtenida el 16 de abril del 2024 de 
https://material-properties.org/es/cloruro-de-polivinilo-densidad-resistencia-punto-de-fusion-conductividad-term ica/ 
11)Reliance Foundry. ¿Cómo se fabrica el acero? 
Obtenida el 19 de abril del 2024 de 
https://www.reliance-foundry.com/blog/como-se-fabrica-el-acero-es#:~:text=De%20la%20manera%20m%C3%A1s %20b%C3%A1sica,del%20correcto%20para%20el%20acero. 
12) Enciclopedia humanidades. Hierro 
Obtenida el 19 de abril del 2024 de 
https://humanidades.com/hierro/#:~:text=El%20hierro%20es%20un%20elemento,un%205%20%25%20de%20sus %20componentes. 
13) Enciclopedia humanidades. Carbono 
Obtenida el 19 de abril del 2024 de https://humanidades.com/carbono/ 
14) Mejordealuminio. el origen: ese bonito cuento de la sal común. 
Obtenida el 19 de abril del 2024 de https://www.mejordealuminio.com/noticias/origen-PVC 15)Grupo AgroRedes Polcom. Malla cuadrada con pvc. 
Obtenida el 27 de Marzo del 2024 de 
https://grupo-ap.com.ar/cerramientos/malla-cuadrada-con-pvc/ 
16)Kommerling, El pvc
Obtenida el 10 de abril del 2024 de 
https://www.kommerling.es/arquitectura-sostenible/pvc#:~:text=El%20PVC%20(policloruro%20de%20vinilo,es%2 0decir%2C%20un%20aislante%20natural. 
Mallas y cerramientos Colombia. Procesos de fabricación, diseño, instalación y mantenimiento de mallas eslabonadas metálicas en cercamientos y cerramientos metálicos. 
Obtenida el 26 de Marzo del 2024 de 
https://www.mallasycerramientos.com/component/content/article/procesos-de-fabricacion-diseno-instalacion-y mantenimiento-de-mallas-eslabonadas-metalicas-en-cercamientos-y-cerramientos-metalicos?catid=23&Itemid=10 1 
Perfiles de aluminio.net. ¿Qué es el trefilado? 
Obtenida el 27 de Marzo del 2024 de https://perfilesdealuminio.net/articulo/icomo-es-el-proceso-de-trefilado/48 Camps Melisa A. La historia del alambrado en Argentina. 
Obtenida el 27 de Marzo del 2024 de 
https://museoroca.cultura.gob.ar/noticia/la-historia-del-alambrado-en-argentina/ 
Xiamen Yujinxiang Industry and Trade Co. Malla recubierta de pvc. 
Obtenida el 5 de Abril del 2024 de 
https://es.yjxfence.com/barrier-fencing/wire-fence/pvc-coated-wire-netting.html 
Mr Steven. Comercio. 
Obtenida el 5 de Abril del 2024 de 
https://es.made-in-china.com/co_jinchuang000/product_Wholesale-Football-Stadium-Field-Wire-Mesh-Fencing-C heap-Galvanized-and-PVC-Coated-Chain-Link-Fence_uonshuersy.html 
Milasost. ¡Más mallas! 
Obtenida el 5 de Abril del 2024 de https://sostenimientodelavida.com/category/malla/ 
BlueMat. Comercio. 
Obtenida el 5 de Abril del 2024 de https://bluemat.com.ar/product/mallas-soldadas-de-alambre-con-pvc/ Icomallas S.A. Comercio 
Obtenida el 5 de Abril del 2024 de 
https://icomallas.com/producto/malla-electrosoldada-recubierta-en-pvc-3-4pulg/ 
UNLP. Clase 8/soldadura. 
Obtenida el 10 de abril del 2024 de 
https://unlp.edu.ar/wp-content/uploads/73/27873/03be3424af308bf57bee6ac2aa169171.pdf Aceroa, Composición del acero y sus propiedades. 
Obtenida el 10 de abril del 2024 de https://www.aceroa.com/composicion-del-acero-y-sus-propiedades/ Evek Gmbh, Comercio. 
https://evek.red/categorias/3004-malla-de-acero-inoxidable-5-200-malla-de-tela-met-lica-14301-v2a-304-filtro-filt raci-n.html 
Hebei Swako Wire Mesh co. Comercio 
Obtenida el 15 de abril del 2024 
https://es.swakoshaleshakerscreen.com/news/heat-resistance-and-corrosion-resistance-70035154.html

Disco Flap de desbaste diamantado lija

Síntesis

Contexto histórico, social y económico

El disco flap diamantado de desbaste es un accesorio que se le agrega a una maquina amoladora angular. Dicho disco se comercializa en tamaños de 4” o7”. Este accesorio sirve para realizar la función de arranque, corte o rayado de la superficie por acción mecánica. Esto es posible gracias al grano abrasivo, el cual es una partícula de mineral, en este caso diamante, molido organizado de una manera específica. Es la parte del abrasivo la que entra en contacto directo con el material a lijar. Los discos flap presentan un conjunto de múltiples hojas de tela abrasiva montadas sobre una base con gran poder de desbaste y un suave acabado de la superficie. [1]

Este material no tiene un lugar de origen específico en el mapa, pero fue desarrollado por una empresa llamada “Saint-Gobain Abrasives” ubicada en Brasil-Sao Paulo, bajo una de sus marcas llamada “Norton”. El descubrimiento del disco flap de desbaste sirvió para obtener mejores resultados al momento de hacer una remoción de algún material, logrando un acabado más rápido y pulcro. Al ser una herramienta que puede actuar en distintos tipos de materiales, su crecimiento en el mercado le ayudó dándole lugar a diferentes discos flap de desbaste. [2]
Como mencionamos anteriormente, este material no tiene lugar de origen, pero si nos adentramos mucho más en la historia, nos vamos a la edad prehistórica, cuando los abrasivos se utilizaban rozando piedras de cierta dureza contra otras, para conseguir darle forma a las armas y herramientas. El principal inventor de esta técnica, fue el hombre primitivo que la utilizaba para poder obtener un acabado rebarbado y pulido.
La evolución de los discos flap de desbaste lija fue muy lenta, al pasar los años, los artesanos trataban de aglomerar granos de materiales abrasivos sobre soportes flexibles, pretendiendo que se fijara mediante adhesivos, y ahí es cuando se comenzó a ver los discos en sus primeros ensayos. Llegando al siglo XIX, el geólogo Friedrich Mohs descubrió la dureza de los materiales, siendo en gran parte de vital importancia para la fabricación y el avance en los discos abrasivos. Este gran descubrimiento nos sirvió para poder utilizar los minerales según sus características en distintos tipos de materiales y funciones. El propósito de esta herramienta siempre fue así como en la antigüedad, el de eliminar el material sobrante de una pieza para obtener la forma y las dimensiones que deseamos conseguir, Los discos como los conocemos actualmente comenzaron a producirse y utilizarse alrededor del año 1975. La aparición y avance tecnológico de dicho material introdujo una mayor eficiencia en el proceso del desbaste y acabado en los materiales, como así también, se consiguió una mayor durabilidad de la herramienta, gracias al uso de diamantes sintéticos en su estructura, ya que esto le da mayor vida útil que otro mineral, y como así también una mayor reducción de residuos al momento de utilizarlo. Actualmente, la utilización de estos discos abrasivos abarca varios sectores productivos, teniendo entre ellos; La metalurgia, náutica, mármol, acero, madera, etc.
El costo de estos discos, pueden llegar a ser un poco costosos, tanto por la tecnología utilizada como por el mineral, que en este caso es el diamante, sin embargo, su precio lo compensa con su rendimiento en comparación con otros discos de desbaste. [3]
El disco flap abrasivo diamantado puede tener un impacto ambiental significativo debido a varios factores. La minería en este caso puede provocar daños ambientales, como la degradación del suelo. Sumándole que su fabricación y uso, generan emisiones de carbono (compuesto del diamante), el cual contamina el aire y el agua.
Al utilizarse diamantes sintéticos en la fabricación de los discos, se puede minimizar el uso de energía al momento de la producción de nuevos discos utilizando los materiales reciclados de estos mismos, la calidad de los materiales utilizados también se refleja en su calidad, motivo por el cual su sustentabilidad es mayor. [4]

Definición ciencia

El Disco Flap de desbaste diamantado lija está compuesto por una serie de láminas de granos abrasivos. Estos granos pueden ser de óxido de aluminio natural o sintético, carburo de silicio, zirconio, cerámicos o de diamante, siendo unidos por un agente aglutinante, utilizando un material de soporte para ser fijados. Los granos que se utilizan en este caso son de diamante. Estos discos están disponibles en distintos tamaños y granos para un uso en específico, adaptándose a ciertos materiales y necesidades que se requiera. Son utilizados en diversas aplicaciones industriales y de manera aficionada debido a su eficacia en el desbaste. [5]

Procesamiento

El proceso de fabricación de estos discos se inicia moliendo minerales o diamantes sintéticos, para luego tamizarlos, así conseguir tamaños variados de partículas abrasivas. Dichas partículas son tratadas térmicamente y clasificadas en base a sus dimensiones. Cuanto más pequeño sea el grano, más delicado va a ser el acabado final del material a tratar con este disco de desbaste diamantado. Una vez clasificados, estos granos se esparcen sobre una superficie de soporte tratada con una resina o un material similar de
adherencia, formando así paños de lijas. Dichos paños son cortados en tiras para obtener pequeñas piezas, las cuales se ordenan radialmente y montadas levemente sobre un disco plástico, de fibra de vidrio o metal, que resista mecánicamente la fuerza centrífuga en la cual es usado este disco. [6]

Propiedades

Normas

NormaTítulo
ANSI B7.1Instituto Nacional Estadounidense de Estándares
ISO 9001Organización Internacional de Normalización
ISO 14001:2004Sistemas de gestión ambiental
ABNT 12413Asociación Brasileña de Normas Técnicas
IRAM 12431Instituto Argentino de Normalización y Certificación

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
NORTON
(Saint-Gobain)
https://www.nortonabrasiv
es.com/es-ar
MAIL:
sga.ar.norton@saint-
gobain.com
DISCO
(Unidades mayoristas)
Discos de
desbaste
diamantados
BrasilNORTON
KGS
(Swiss Diamond Technology)
https://www.kgs.swiss/
MAIL:
E sales@kgsdiamond.com
Discos laminados de 4.5”Discos
abrasivos
SuizaCECROPS
(CARAT NEDELAND B.V.)
https://www.carat-
tools.nl/en/carat-diamond-
flap-disc-%C3%B8-125-mm
MAIL:
info@carat-tools.nl
CARAT Discos laminados de 5”Disco flap
diamantado
Paises BajosCARAT
ABRASIVOS BELGRANO
https://abrasivosbelgrano.
com.ar/producto/discos-
flap-diamantado-115-mm-
60/
Discos laminados de 4”Disco flap
diamantado
Argentina

Bibliografía

https://www.demaquinasyherramientas.com/herramientas-electricas-y-accesorios/discos-para-herramientas-electricas
https://werkindustrial.com/2021/01/28/historia-de-los-abrasivos-una-herramienta-fundamental-para-el-ser-humano/
https://vsmabrasivos.com/latam/prehistoria-abrasivos/
https://www.abracom.es/es/blog/post/27-discos-abrasivos-tipos-clases-ymateriales.html
https://www.brementools.com/insumos-y-accesorios/discos
https://www.demaquinasyherramientas.com/herramientas-de-corte/que-son-los-discos-flap-tipos

TEXACEM

Síntesis

Contexto histórico, social y económico

Texacem es un material innovador que combina dos funciones esenciales en una sola placa: proporciona un excelente aislamiento tanto acústico como térmico. Fabricado a partir de materiales reciclados provenientes de la industria textil y aglutinantes de alta calidad, Texacem se destaca por su resistencia y facilidad de manipulación, cumpliendo así con los más altos estándares de desarrollo sostenible y sustentabilidad.

Disponible en dos formatos distintos, 400x600x32mm y 340x570x32mm, ambos con un peso aproximado de 3,5kg, Texacem se adapta a diversas necesidades de construcción, ya sea en sistemas tradicionales o en sistemas de construcción en seco. Su instalación es simple y rápida.

El éxito de este producto es el resultado de una colaboración entre universidades, arquitectos y la industria textil de San Martín. Además, cuenta con el respaldo técnico del laboratorio de acústica y luminotecnia del Centro de Investigaciones Científicas del Gobierno de la Provincia de Buenos Aires.

Texacem no solo ofrece soluciones innovadoras en materia de construcción, sino que también contribuye activamente a la reducción de residuos textiles y al fomento de prácticas sostenibles en la industria.

(…)Las placas son el resultado de un trabajo conjunto que comenzó con la tesis de la tesis de la maestría de la arquitecta Marta Edith Yajnes, en la especialización de residuos de construcción y urbanos, de la Universidad de Buenos Aires, Facultad de Arquitectura, Diseño y Urbanismo, defendida en mayo de 2022. Desde el año 2020 se desarrolló un trabajo interdisciplinario de investigadores, pasantes y voluntarios en dos proyectos de Universidades Públicas: El proyecto Atlas de Residuos Sólidos Industriales, dirección Dr. Roberto Rafael Busnelli, de la Universidad Nacional de San Martín; Escuela de Hábitat y Sostenibilidad; Instituto de Arquitectura; Laboratorio de Materiales.El proyecto UBACyT Sistemas Constructivos sustentables con aplicación de economía circular, dirección Mag. Arq. Marta Edith Yajnes, de la Universidad de Buenos Aires (FADU) dentro del Centro Experimental de la Producción, dirección Mag. Arq. Carlos Hugo Levinton.El trabajo cuenta con los residuos de la industria textil de San Martín y la asistencia técnica de profesionales del Laboratorio de Acústica y Luminotecnia del Centro de Investigaciones Científicas del Gobierno de la provincia de Buenos Aires. [1]Para ayudar a contextualizar Marta Edith Yajnes nos comenta “yo me especialice en reinserción productiva de residuos de construcción y urbanos, cuando hice la maestría para la tesis me propusieron estudiar los residuos textiles y al estudiar el ciclo productivo de la industria me encontré que con este residuo (el orillo y falso orillo de la tejeduría plana) había que hacer algo xq x el proceso productivo no hay forma de reducirlos como otros residuos textiles que dependen de controles de calidad para evitar fallos o programas para minimizar desperdicios. Luego con mi equipo de uba buscamos casos de estudio y encontramos que varios grupos habían trabajado recortes de tela en mezclas de cal y de cemento, y comenzamos a probar al igual que ellos con la idea de generar un producto aislante térmico, probamos diferentes materiales como acrílico, poliéster, poliéster con algodón y nos dio mejor vínculo el acrílico xq es ávido de agua. Después de los ensayos de fuego satisfactorios y por su buena estética surgió la posibilidad de probar en ensayos de acondicionamiento acústico”.Texacem es un compuesto sostenible desarrollado para abordar la problemática de los residuos textiles no sustentables. Texacem fusiona estos componentes para ofrecer una placa de alto desempeño acústico y térmico. Esta composición refleja un enfoque sostenible que transforma desechos textiles en una solución constructiva, promoviendo así la preservación del medio ambiente y la construcción de un futuro más sustentable. Con respecto a la vida útil del material, al ser un producto reciente que aún se sigue ensayando, no se tiene experiencia. Pero se estima que al ser un producto cementicio y teniendo los recaudos necesarios si se usa para acondicionamiento acústico y que no haya condensación  interna en el caso de aislación térmica interna la vida útil no será un problema.

Definición ciencia

Texacem es una placa para soluciones térmica y acústica. Utiliza materiales reciclados de la industria textil y los combina con  aglutinantes. La dosificación es 1:0,25:1,75 en el orden cemento, fibras (50% de orillo y 50% de falso orillo) y agua, luego llevan ferrite para el color. El consumo de cemento para una placa de 40×60 o 34×57 son 2,4 kg de cemento y el resto en proporción.

Procesamiento

 El proceso de elaboración del Texacem se inicia con la recolección de residuos textiles: el orillo bollo y el falso orillo. Estos materiales se introducen en moldes en los que se pueden poner hasta  600 gramos de tela, donde se recortan retazos, de hasta 7 cm de largo, utilizando una caladora. Este proceso se encuentra en constante ajuste e investigación para mejorar la eficiencia de producción. Luego, los retazos se mezclan con aglutinantes en un proceso de mezclado. Posteriormente, la mezcla se vierte en moldes termoformados y se somete a un proceso de curado para asegurar la resistencia y durabilidad del material. Después del curado, las placas se secan y se embalan en sets de cuatro unidades. Todo el proceso se desarrolla con una tecnología de bajo costo, lo que permite contribuir a la gestión de residuos textiles de manera eficiente y sostenible.

Propiedades

Normas

NormaTítulo
IRAM 4065
Equivalente a ISO 354
Acústica. Medición de absorción de sonido en sala reverberante.
IRAM 1860Método de ensayo de las propiedades de transmisión térmica en régimen estacionario, mediante el aparato de medición de flujo de calor.
IRAM 1735Materiales de construcción, determinación de índice de permeabilidad al vapor del agua
IRAM 11910Materiales de construcción. Reacción al fuego. Determinación del índice de propagación de llama con método del panel radiante.
IRAM 11912Materiales de construcción. Reacción al fuego. Determinación del índice de densidad óptica del humo.

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca

*Este producto aún no se comercializa se está terminando de resolver algunos detalles técnicos y se está por ensayar una prueba de tiempos de fabricación para luego largarlo al mercado.
Placa – Paneles de 400x600x32mm / 3,5kg

Placas – Paneles de 
340x570x32mm / 3,5kg
Texacem – Placas para soluciones termicas y acusticasArgentinaTEXACEM

Bibliografía

[1] [Marta Edith Yajnes, arquitecta. Texacem “placas para soluciones térmicas y acústicas” 2022  <folleto>]
https://drive.google.com/drive/folders/1CTy10iDt_LVbYvo6T1dYcx1dO_cnk5a0
https://www.instagram.com/atlas_residuos_industriales?igsh=MWpsNnJ3Mjh3bGFpMA
https://www.instagram.com/proyecto_transformar?igsh=NmY4dXgzbnhwYnB5

Electrodo para soldar punta azul

Síntesis

El electrodo 6013 es un compuesto. Su revestimiento de fundente incluye rutilo, celulosa, ferromanganeso, silicato de potasio como aglutinante y otros materiales silíceos. Los compuestos de potasio permiten su funcionamiento con corriente alterna a amperajes y voltajes bajos. El núcleo del electrodo 6013 suele fabricarse con alambre de acero al carbono. Los compuestos de potasio en el fundente posibilitan que los electrodos operen eficientemente con corriente alterna a amperajes y voltajes bajos.
Este electrodo es muy utilizado para soldar chapas metálicas debido a su fácil manejo y versatilidad. Es ideal para trabajos de fabricación general, ya que proporciona un arco estable y produce un cordón de soldadura de buena apariencia. También se utiliza en trabajos de soldadura estructural y es adecuado para soldar aceros al carbono y galvanizado. Este producto se comercializa en varillas de diferentes diámetros y en cajas por kg.

Contexto histórico, social y económico

A finales del siglo XVIII y principios del XIX, Vasily Petrov descubrió el arco eléctrico. Esta idea fue posteriormente explorada por diversos científicos, incluyendo a Michael Faraday en Gran Bretaña, aunque sus esfuerzos se restringieron mayormente a investigaciones teóricas durante décadas.
El tránsito hacia la aplicación práctica de estos hallazgos ocurrió hacia finales del siglo XIX, coincidiendo con el auge de la fabricación industrial de acero y hierro. La necesidad de unir componentes metálicos de manera eficiente se volvió imperativa. En 1881, en París, Nikolay Benardos presentó un método de soldadura utilizando un electrodo de carbono, exhibiendo su máquina ElektroGefest que ganó reconocimiento en la exposición internacional de París.
En 1888, Nikolay Slavyanov, un científico ruso, inventó y patentó un equipo de soldadura que empleaba electrodos metálicos consumibles con propiedades similares a los metales a ser soldados. Esta tecnología, en esencia, sentó las bases para la proliferación de la soldadura por arco eléctrico a nivel global.
Los primeros dispositivos de soldadura permitieron corregir defectos en piezas de fundición y reparar partes desgastadas de maquinarias. Con la llegada del nuevo siglo, la soldadura eléctrica experimentó mejoras sustanciales, incluyendo métodos para activar el arco eléctrico mediante corrientes trifásicas y alternas.
En 1906, el inventor sueco Óscar Kjellberg perfeccionó el diseño de Slavyanov al patentar un electrodo de soldadura recubierto de fundente. Este recubrimiento especial protege la soldadura de la oxidación y la acumulación de impurezas perjudiciales, y su diseño prácticamente ha perdurado hasta el presente.
Actualmente son utilizados en diversas áreas como construcción, reparación, fabricación de maquinaria, industria del transporte y petróleo y gas. Se emplean para unir componentes metálicos garantizando resistencia y calidad. Ideales para estructuras metálicas, vehículos, infraestructuras y equipos industriales.
Los electrodos 6013 no son considerados como materiales costosos en comparación con otros tipos de electrodos utilizados en soldadura. En general, suelen ser bastante accesibles para la mayoría de los soldadores, lo que los convierte en una opción popular para una amplia gama de aplicaciones de soldadura. (Metinvest, 21)
Los componentes del electrodo de punta azul son abundantes y muy accesibles. El uso de electrodos para soldar pueden tener varios impactos ambientales. En primer lugar, la generación de residuos, aproximadamente 35 mm de cada electrodo soldado se vuelven residuales. Por último podemos mencionar la contaminación del aire, algunos electrodos de soldadura emiten humos y gases dañinos durante el proceso.

Sin embargo, algunos de ellos están evolucionados para reducir esta contaminación. (Fronius, n.d.) (Pérez González, 2019) (GARCÍA, 2023)

Definición ciencia

Se compone de una variedad de elementos que contribuyen a su funcionamiento y rendimiento óptimos. El revestimiento de fundente, una parte esencial del electrodo, está formulado cuidadosamente para proporcionar características específicas durante el proceso de soldadura.
Los elementos son: El rutilo, que proporciona propiedades de fácil ignición y estabilidad del arco eléctrico; La celulosa la cual se utiliza como agente de carbón, la cual se descompone y libera gases que ayudan a estabilizar el arco eléctrico; El ferromanganeso, que se utiliza en el revestimiento de fundente para ayudar a mejorar la resistencia y la tenacidad y el silicato de potasio que actúa como aglutinante en el revestimiento de
fundente.

Procesamiento

el procesamiento se desarrolla en los siguientes pasos:

  1. Obtención de la materia prima:
    Los electrodos para soldar se fabrican a partir de materiales específicos,rutilo, celulosa, ferromanganeso, silicato de potasio.Estos materiales se extraen de minas o se producen mediante procesos metalúrgicos.
  2. Preparación y procesamiento de la materia prima:
    Los materiales pasan por procesos de fundición y conformado con el fin de adquirir la forma deseada del electrodo. Además, es posible incorporar recubrimientos especiales al electrodo para potenciar sus propiedades de soldadura, tales como resistencia a la corrosión o conductividad eléctrica.(Seabery, 2023)
  3. Diseño y fabricación del electrodo:
    Los diseñadores crean modelos CAD de los electrodos, considerando su forma, tamaño y
    características específicas.La fabricación implica mecanizado, rectificado y pulido para obtener la geometría precisa del electrodo 3. (TEBIS, n.d.)
  4. Control de calidad: Se llevan a cabo pruebas para asegurar la calidad del electrodo, que incluyen inspección visual, medición de dimensiones y análisis de composición química. Los electrodos que no cumplen con los estándares de calidad son descartados, mientras que solo aquellos que cumplen con los estándares son enviados al siguiente paso del proceso.
  5. Uso en la soldadura:
    Los electrodos se emplean en procesos de soldadura, donde se aplica corriente eléctrica para fundir el material base y formar conexiones sólidas. Durante el proceso de soldadura, el electrodo experimenta un desgaste progresivo y su forma se altera.
  6. Reciclaje o disposición final:
    Los electrodos usados pueden ser reciclados para recuperar los materiales valiosos que contienen. En caso de que no sean reciclables, deben ser desechados de manera adecuada, siguiendo las normativas ambientales establecidas.

Propiedades

Normas

NormaTítulo
AWS A5.1-69Norma AWS A5.1-69:Esta norma internacional se utiliza para designar electrodos para soldadura y reemplaza el código de colores en el electrodo
FA. 8 009ELECTRODOS DE ACERO AL CARBONO REVESTIDOS PARA
SOLDADURA POR ARCO
No207/95
(E.N.R.E.)
Asociación Electrotécnica Argentina (AEA): establece requisitos generales para la instalación eléctrica
CSA W48ELECTRODE AND FILLER METALS CERTIFICATION

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
OxiMercedes2mm Lq6013-200 1 KgElectrodos
Soldadora
Punta Azul
ArgentinaLüsqtoff
Acindar
● Av. Dr. Ignacio
Arieta 4936
B1766DQP La
Tablada, Buenos
Aires
Argentina
● Conmutador:
+5411 5077-5000
https://www.acinda
r.com.ar/
2,50 Mm X 1 KgElectrodos
Soldar Acindar
6013 Punta
Azul
ArgentinaACINDAR
 Conarco
● tel:011 4754 7000
(https://esab.com/a
r/sam_es/brands/es
ab-family-brands/co
narco/)
2,00 Mm X 5 KgElectrodo
Soldar
Conarco 6013
13a Punta Azul
ArgentinaConarco

Bibliografía

ACINDAR. (2018). https://acindar.com.ar/wp-content/uploads/2018/11/electrodos-aws-e-6013.pdf
Electrodos para soldar: todo lo que necesitas saber. (n.d.). SiderAceros. Retrieved April 4, 2024, from
https://www.sideraceros.com/blog/128-electrodos-para-soldar-todo-lo-que-necesitas-saber
EURATOM S.A. (n.d.). especificaciones de venta. euratom. Retrieved MARZO 16, 2024, from
http://www.euratom.com.ar/index.php?cuerpo=electrodos-celulosicos
Fronius. (n.d.). Fronius. Retrieved April 5, 2024, from
https://www.fronius.com/es-mx/mexico/tecnologia-de-soldadura/centro-de-informacion/revista/2018/sol
dadura-sostenible
GARCÍA, J. (2023, octubre 14). Sostenibilidad en la soldadura: Reciclaje de materiales y técnicas ecoamigables.
https://www.oasanorte.com/blogs/blog/sostenibilidad-en-la-soldadura-reciclaje-de-materiales-y-tecnicas-
ecoamigables
Herrero, J. L. (2023, 07 11). Don Herrero. Retrieved April 2, 2024, from
https://donherrero.es/soldadura/que-se-suelda-con-6013/
Kumar, S. (21, 06 14). material welding. Retrieved marzo 25, 2024, from
https://www.materialwelding.com/e6013-electrode-specification-its-meaning/#more-506655
la revista ferretera. (2016, December 27). Significado y características del electrodo revestido E6013. Revista TYT.
Retrieved April 16, 2024, from
https://tytenlinea.com/significado-caracteristicas-del-electrodo-revestido-e6013/
Metinvest. (21, 07 07). Soldadura eléctrica: sus orígenes, la evolución y la aportación de Ucrania. Metinvest.
Retrieved Marzo 25, 2024, from
https://metinvestholding.com/es/media/news/elektrosvarka-istoriya-poyavleniya-evolyuciya-i-sled-ukraini
Pérez González, R. A. (2019, 12). Impacto Al Medio Ambiente De La Soldadura. Idoc Pub. Retrieved marzo 25,
2024, from https://idoc.pub/documents/impacto-al-medio-ambiente-de-la-soldadura-vnd5p7dggjlx
Seabery. (2023, July 12). Guía completa de los principales tipos de procesos de soldadura. Seabery. Retrieved April
16, 2024, from https://seaberyat.com/es/guia-completa-tipos-soldadura/
TEBIS. (n.d.). Diseño de electrodos con el asistente CAD. TEBIS. Retrieved abril 5, 2024, from
https://www.tebis.com/es/software/software-cad/diseno-de-electrodos