Todas las entradas de Materialoteca

Tubo de acero y polietileno

Síntesis

Se trata de material compuesto que consiste en un tubo de acero de 0,8mm con una capa de adhesivo la cual le permite incorporar un revestimiento de polietileno de media densidad de 2,3mm lo que le brinda a la estructura metálica interior una protección anticorrosiva sin discontinuidades además de una alta resistencia al aplastamiento y las pinchaduras.

Se utiliza para conducción y distribución de gas natural y gases licuados en viviendas e industrias y su diámetro varía entre 20 Ø, 25 Ø, 32 Ø, 40 Ø, 50 Ø, 63 Ø, 75 Ø, 90 Ø, 110 Ø mm según su uso, en Argentina se comercializan en una longitud de 4 metros.

El recubrimiento de polietileno pertenece a la familia de los termoplásticos, los cuales son un tipo de plástico que mediante la aplicación calor sufren una unión térmica molecular entre los tramos de tubo lo que garantiza hermeticidad y más seguridad en el sistema.

Contexto histórico, social y económico

No es posible detectar la exacta ubicación geográfica de la invención de las tuberías de acero y polietileno, ya que es el resultado de una evolución constante en los materiales, la industria de las tuberías y la tecnología de uniones materiales. El uso de las tuberías de acero solicitaba excesivo mantenimiento y reparación lo que resultaba costoso debido a que el acero sin tratamiento se corroe fácilmente. La solución a tal problemática fue recurrir a una protección anticorrosión que brinda el polietileno, el mismo se ha utilizado como material para tuberías desde la década del 50´ en Estados Unidos y Europa. Lo novedoso de este material es la técnica de termofusión que es una manera de resolver las uniones con los accesorios correspondientes mediante la aplicación de calor y utilizando el propio material, es como una soldadura, simple y rápida.

El uso de las primeras tuberías se remonta a Oriente Medio e India, materializadas en losa de barro en tramos cortos unidas con un adhesivo de betún. En cambio, en la Antigua Roma ya se construían acueductos de piedra en las civilizaciones para transportar agua mediante su desnivel, pero resultaba poco práctico.

El primer uso de tuberías propiamente dichas fueron metálicas y data de Egipto (2000 a.c) de hierro fundido para transportar agua. Con el avance de las tecnologías y los procesos productivos se generaliza en 1950 el uso de tuberías de polietileno para aplicaciones de baja presión como sistema de riego y drenaje.

Luego con la mejora del material se comenzó a emplear para instalaciones de alta presión como agua potable y gasoducto, mayormente se intensificó su uso por las grandes ventajas que ofrece el polietileno respecto a los demás materiales utilizados hasta el momento para las tuberías. Con la introducción de nuevos materiales y el desarrollo de técnicas como de extrusión por soplado, se compone un nuevo tipo de tubería que inicialmente tiene el propósito de servir para instalaciones de agua y que después se extendió su uso al de tuberías de gas con una innovadora tecnología de termofusión que facilitó su colocación, mejoró la durabilidad del material y del sistema al oponer máxima resistencia a la corrosión, impacto, aplastamiento y perforado, asimismo facilita su transporte por su liviandad.

La gran ventaja que posee el tubo es que, al ser un material compuesto, ambas de sus partes son reciclables individualmente, tanto el acero como el polietileno. La unión entre los materiales se hace mediante una película de pegamento que luego de ser extraída permite que se puedan separar los dos materiales y reciclar por su cuenta. El acero es un material que puede ser producido con bajo impacto ambiental, sin desperdicios, y es 100% reciclable, además de tener una vida útil mas extensa, flexible y respetuosa con el medioambiente. En la fabricación del acero se general emisiones atmosféricas que pueden aumentar el proceso de degradación del suelo, el aire y el agua, también genera compuestos nocivos y contaminantes como el monóxido de carbono (CO), el óxido nitroso (N₂O) y el dióxido de azufre (SO₂), que contribuyen a la lluvia ácida, afectan al suelo y la vegetación.[4] El utilizar acero reciclado en los procesos de fabricación de nuevos elementos reduce el consumo de energía un 70%, ya que evita la repetición del proceso de extracción, el transporte de nuevas materias primas y el consumo de agua se reduce un 40%.

Mientras que el polietileno posee la ventaja de reciclarse mediante su fundición y volverlo a usar en la fabricación de otros elementos, además de que se puede utilizar como fuente de energía. Existen tres maneras de reciclar el polietileno: reciclaje mecánico en el cual se cortan las piezas de plástico en pequeños pedazos y luego se trabaja como materia prima, reciclaje químico donde se degrada el plástico aplicándoles calor y reciclaje energético que consiste en la combustión del plástico para obtener energía. El método de reciclaje empleado para reciclar el polietileno de media densidad que recubre el tubo de acero es el mecánico.

Definición ciencia

El acero es una aleación de hierro y carbono, contiene otros elementos de aleación como manganeso, sílice, níquel, cromo, etc. Dependiendo las propiedades físicas y mecánicas que se deseen. Los aceros empleados para tuberías son al carbono con un porcentaje de Fe: 98%, C: 0,05% a 2%, Mn: 0,25% a 1,65% contiene otros elementos aleantes y el acero inoxidable compuesto principalmente de Fe: 70,8%, C: 0,08% y cromo 20%..Polietileno es un polímero sintético termoplástico que se obtiene mediante la polimerización del etileno y su composición química es C: 85% a 94%, H: 6% a 15% e impurezas 0,01% a 1%.

Procesamiento

El mineral de hierro que se extrae de la naturaleza y tiene una parte pura y otra de impurezas. Para fabricar acero se echa en el alto horno una mezcla de mineral de hierro y un combustible llamado Cok que separa las impurezas del resto de material. Una vez hecho esto, el resto será arrabio (hierro casi puro con un bajo contenido de carbono). El carbono se acopla al acero en la combustión con el cok y se forma el acero líquido. Este arrabio será el acero en estado líquido y el que se utilizada en el siguiente proceso que será darle forma por extrusión.

El petróleo se coloca en torres de acero que separa los hidrocarburos según su densidad por presión y calor, el llamado cracking del petróleo. De ahí surge el etileno que se somete a un proceso de polimerización que desarrolla en un reactor a 99° C, el etileno en estado gaseoso en contacto con catalizadores como el cloruro de titanio se transforma en plástico. El plástico se pasa por la maquina extrusora donde se calienta y posteriormente se plastifica hasta salir por el cabezal donde está la boquilla la cual define el diámetro y el espesor final del tubo. La unión entre ambos tubos (acero y polietileno) se da por una fina película de pegamento que los une entre sí.

Propiedades

TIPO DE PROPIEDADPROPIEDAD O CARACTERÍSTICA VALOR TÍPICO
Físico – químicaDensidad 
Resistencia ambiental ¹* 
MecánicaLímite de elasticidad
 Fuerza de Tensión
Térmica Punto de fusión
Punto de ebullición
Óptica, Acústica, entre otrasMaterial opaco
Alta conductividad eléctrica
Reciclable
NORMATÍTULO 

Puesta en obra-

Proveedores

DISTRIBUIDOR LOCAL FORMATO NOMBREORIGENMARCA



Bibliografía

Sikaguard 700 S

Síntesis

– La Sika 700 S se compone de la mezcla en un solo componente llamado Siloxano, un compuesto orgánico que contiene dos átomos de silicio unidos a un átomo de oxígeno, lo que permite que sea un impermeabilizante. 

– Se encuentra de forma líquida en latas de 10, 20 y 200 litros y es utilizada para proteger sustratos absorbentes expuestos al agua de lluvia como el hormigón, revoques cementicios, bloques, baldosas de hormigón, fibrocemento, ladrillos (de cal, arcilla, no vitrificados), piedra natural, también puede ser usado como imprimación hidrofóbica bajo capas protectoras de base solvente. Es adecuado para protección contra el ingreso de agua, para el control de humedad y para incrementar la resistencia. 

– Se aplica utilizando pulverizador de baja presión, pincel o rodillo, trabajando de abajo hacia arriba cuidando de no dejar escurrir el producto y lo más importante, aplicar manos seguidas “húmedo sobre húmedo”, Este tardará aproximadamente 3 horas a 20°C.

Contexto histórico, social y económico

Los hidrorepelentes, o productos que repelen el agua, han existido en diversas formas a lo largo de la historia, aunque los desarrollos modernos se remontan al siglo XX. Los primeros hidrorepelentes solían basarse en ceras naturales, como la cera de abejas, para crear una capa protectora sobre la superficie tratada. Sin embargo, con los avances en la química de materiales, especialmente durante el siglo pasado, se han desarrollado compuestos sintéticos más eficaces para repeler el agua. 

El lugar de origen de la Sikaguard 700 S es Suiza, ya que Sika es una empresa suiza especializada en productos químicos y materiales de construcción e industria. Fue Kaspar Winkler el inventor de la empresa Sika, que cuenta con más de 27.000 empleados en todo el mundo. Este producto fue testeado y aprobado en Suiza en 1993. 

Es un descubrimiento físico-químico que penetra en los poros abiertos del substrato otorgando una impermeabilización de alta performance y durable, mientras que permite la difusión del vapor en ambas direcciones. No cambia la apariencia estética del soporte porque no forma una película sobre los materiales. 

El Sikaguard 700 S es un producto innovador desarrollado por la empresa Sika. Se aplica actualmente para la protección de materiales absorbentes en el sector de la construcción y la ingeniería civil. El propósito original de este tratamiento superficial es cumplir como un hidrorrepelente y protector incoloro para superficies absorbentes expuestas, con el objetivo de prevenir la absorción de agua/líquidos y proteger los materiales de los efectos nocivos de la humedad, como la corrosión y el deterioro antes de tiempo, prolongando la vida útil. 

El paradigma socio-tecnológico de la época en la que los hidrorepelentes modernos comenzaron a aparecer en el mercado (segunda mitad del siglo XX) se caracterizaba por un enfoque en: 

Industrialización Avanzada: Aumento en la producción de bienes de consumo y una mayor disponibilidad de tecnologías de fabricación. Énfasis en la Innovación Tecnológica: Desarrollo de nuevos materiales y procesos de fabricación. Crecimiento del Consumismo: Mayor demanda de productos que ofrecieran comodidad, durabilidad y rendimiento mejorados

Desarrollo de la Sociedad de Consumo: Cultura de consumo, ofrecer soluciones prácticas para proteger y mantener los objetos de valor. 

Avances en la Química de Materiales: El desarrollo de nuevos materiales y compuestos químicos permitió la creación de productos basados en fórmulas químicas específicas. 

Todos los cuales contribuyeron al surgimiento y la proliferación de productos como los hidrorepelentes modernos. 

Estos avances tecnológicos promueven la sostenibilidad, eficiencia y durabilidad en la construcción, reflejando un enfoque innovador para garantizar estructuras duraderas y seguras. 

Es un material costoso, rondando entre los 77.616, 330.000 y 3.300.000 de pesos argentinos. Su rendimiento varía según el material: 

– Para materiales porosos es de aproximadamente 0,350 – 0,750 litro/m2 por mano 

– Para mortero u hormigón es de aproximadamente 0,250 – 0,350 litro/m2 por mano. 

Impacto Ambiental 

La explotación del material puede generar problemas ambientales debido a la producción de residuos químicos, emisiones tóxicas, impacto en la biodiversidad y contaminación del agua. Estos factores contribuyen a asociar a este material con una contaminación elevada, por lo que es fundamental implementar medidas adecuadas para gestionar sus residuos y minimizar su impacto ambiental: 

-Mantener un almacenamiento adecuado con los recipientes cerrados cuando no se estén utilizando. – Reciclar los envases vacíos siguiendo las normativas locales de reciclaje. 

– Utilizar la cantidad adecuada según las indicaciones para evitar excesos que puedan generar residuos innecesarios. 

– Capacitar al personal sobre el manejo adecuado, incluyendo la gestión de residuos y la importancia de minimizar el impacto ambiental. 

– Separar adecuadamente los residuos generados durante el uso para facilitar su reciclaje o tratamiento adecuado. 

– Seguir las regulaciones medioambientales locales y nacionales relacionadas con la gestión de residuos para asegurar el cumplimiento de las leyes vigentes

Definición ciencia

Este material es un producto líquido monocomponente orgánico, siendo este el Silano-Siloxanos mezclado en solventes orgánicos. Los Solanos-Siloxanos son formados por reacción de cadenas lineales o cíclicas de dos átomos de silicios unidos a uno de oxígeno, y grupos metilos (molécula pequeña compuesta por un átomo de carbono y tres átomos de hidrógeno). Es un polímero compuesto sintético derivado de la silicona (sílice), se produce mediante la combinación de silanos y siloxanos. 

El silicio se extrae de fuentes naturales como el cuarzo y la arena, mientras que las siliconas se producen sintéticamente a partir de unidades básicas de siloxano mediante procesos químicos controlados. Cuando se combinan silanos y siloxanos en ciertas condiciones químicas, se pueden formar compuestos híbridos conocidos como silano-siloxanos. Que combinan las propiedades hidrofóbicas de los silanos con las propiedades de recubrimiento y protección de los siloxanos, creando así un producto que es efectivo para repeler el agua y proteger las superficies contra la humedad, la corrosión y otros daños ambientales. 

Procesamiento

Involucra varios pasos: 

Extracción y Purificación del Silicio: El silicio se extrae de minerales como el cuarzo mediante procesos de minería. Luego, se somete a procesos de purificación. 

Síntesis de Siloxanos: Los siloxanos, que son las unidades básicas de las siliconas, se producen mediante la reacción química entre el silicio purificado y compuestos orgánicos, como clorometanos o alcoholes. Polimerización: Los siloxanos se polimerizan para formar cadenas largas de polímeros de silicona. Este proceso puede ocurrir en condiciones controladas de temperatura y presión 

Modificación de Propiedades: Una vez formados los polímeros de silicona, se pueden modificar mediante la adición de diferentes grupos químicos u otros aditivos para ajustar sus propiedades físicas y químicas. Formulación del Producto: Los polímeros de silicona modificados se formulan con otros ingredientes y aditivos para crear productos específicos según las aplicaciones deseadas. 

Procesamiento y Fabricación: Los productos terminados se fabrican mediante procesos de moldeo, extrusión, recubrimiento u otros métodos de procesamiento para dar forma al material según las especificaciones del producto final. Pruebas y Calidad: Antes de que los productos salgan al mercado, se someten a pruebas exhaustivas para

Propiedades

TIPO DE PROPIEDADPROPIEDAD O CARACTERÍSTICA VALOR TÍPICO
Físico – químicaDensidad 7850 kg/m³ (8)
Resistencia ambiental ¹*  A  I  B  I  C  I  D  I  E  I  F  I  G
MecánicaLímite de elasticidad345 MPa (9)
 Fuerza de Tensión485 MPa (9)
Térmica Punto de fusión1.375 °C (8)
Punto de ebullición3.000 °C (8)
Óptica, Acústica, entre otrasMaterial opaco
Alta conductividad eléctrica
Reciclable
NORMATÍTULO PAÍS
IRAM 11502-1“Hormigón. Protección de estructuras de hormigón frente a la
corrosión. Parte 1: Recubrimientos”
Argentina
UNE EN 1504 -2 – 2019“Protección superficial del hormigón.”España
SIA 162-5“Protección superficial del hormigón.”Suiza

Puesta en obra-

Centro Cultural Gabriela Mistral- Cristián Fernández Arquitectos y Lateral arquitectura & diseño.

Edificio Audenasa- Vaillo, Irigaray y Eguinoa
Edificio Block Social Nestlé- Guillermo Hevia
Nueva Cabaña y accesos de Masia- Hidalgo Hartmann

Proveedores

DISTRIBUIDOR LOCAL FORMATO NOMBREORIGENMARCA
info@intes.es
https://intes.es/
Chapas, bobinas, tubos, perfiles y platinas.Acero CortenEspañaINTES
info@sintecrom.com.ar
http://www.sintecrom.com.ar/
Hojas o rollos de espesores de 0,6 mm, 0,9 mm y 1,2 mm, y ancho máximo de 1250 mm.Acero CortenArgentinaSINTECROM
–  ventas@mtds.cl
http://www.metaldesign.cl/ind ex.php
1,5 mm a 10 mm de espesor, medida 1.50
x 3.00
Acero CortenChileMETALDESIG
acerocortena@gmail.com
http://www.solucionesperdura bles.com.ar/index.html

Carpintería de obra, decoración de
interiores y exteriores, revestimientos.
Acero CortenArgentinaSP Soluciones Perdurables

Bibliografía

Espuma de poliuretano

Síntesis

La espuma de poliuretano se compone de dos materiales, isocianato y poliol. También contiene otros ingredientes como por ejemplo, propulsores, plastificantes, catalizadores, estabilizadores y tensioactivos. Las espumas de poliuretano se producen haciendo reaccionar un di- o poli-isocianato con compuestos que contienen dos o más hidrógenos activos, generalmente en presencia de un agente o agentes soplantes, catalizadores, tensioactivos basados en silicona y otros agentes auxiliares. Los compuestos que contienen hidrógenos activos son típicamente polioles, poliaminas primarias y secundarias y agua. Dos reacciones principales son promovidas por los catalizadores entre los reaccionantes durante la preparación de la espuma de poliuretano, la gelificación y el soplado. La espuma de poliuretano en aerosol tiene varias aplicaciones debido a su versatilidad y capacidad de expandirse y endurecerse. Algunos son: aislamiento térmico, sellado de grietas y fisuras, aislamiento acústico, fijación y relleno y protección contra la intemperie. Es importante para dicha aplicación que los componentes estén bien mezclados para iniciar la reacción.

Contexto histórico, social y económico

Cuando hablamos del origen y la obtención del poliuretano tenemos que remontarnos al año 1937 en Alemania. Su descubrimiento tuvo lugar gracias a las investigaciones desarrolladas por el químico industrial Otto Bayer. Este material se empezó a utilizar en la década de los 50, ya que hasta entonces no existían máquinas capaces de procesarlo. La primera aplicación del poliuretano como material aislante se produjo en 1948 en un barril de cerveza. No fue hasta 1960 que comenzó su uso en paneles sándwich para la construcción. El “producto obtenido por poliadición de isocianatos y poliol”, como reza en la patente, originó en el círculo de los colegas más burla que reconocimiento, ya que el nuevo material no terminaba de convencer. El hecho de que Bayer y su equipo diera al fin con la espuma de poliuretano fue debido más a la casualidad y a una serie de ensayos bastante fallidos. Si no era posible obtener fibras para tejer bandas sintéticas, se quería elaborar al menos masas moldeables a base de las creaciones macromoleculares. Pero las muestras presentadas de mezclas moldeables de poliéster y diisocianatos tenían tal cantidad de burbujas que lo único para lo que sirvieron al principio fue para causar hilaridad. Los encargados de la oficina de control devolvieron las muestras acompañadas de un comentario irónico: “En todo caso, útil para fabricar imitaciones de queso suizo”.Otto Bayer y su equipo sacaron partido de su fracaso inicial. Al buscar las causas del revés se descubrió que la disociación del dióxido carbónico daba lugar a la formación no deseada de burbujas en la masa. Agregándole a la masa porciones de agua dosificadas con exactitud era posible provocar de forma controlada la formación de burbujas definidas en la sustancia base. Ese fue el origen, pues, de la espuma de poliuretano. Pero, entre tanto, había comenzado la Segunda Guerra Mundial. Evidentemente el momento no era oportuno para hablar de espumas. Ni siquiera de la espuma de poliuretano. Hasta que el producto estuvo listo para lanzarlo al mercado tuvieron que transcurrir otros diez años. Muchos años después de acabar la guerra se siguió trabajando sistemáticamente el resultado por pura casualidad. Solamente a principios de los años cincuenta, se logró ajustar la receta de las espumas de poliuretano, de manera que según fuera necesario se podían obtener espumas blandas, para colchones y elementos acolchados, o bien espumas duras, para aplicaciones técnicas. Desde su origen, han sido múltiples los pasos que se han dado en el desarrollo de este producto. Aplicaciones en diferentes industrias como pueden ser la aérea, la automovilística, la moda, la decoración, la construcción, etc. La espuma de poliuretano se ha convertido en un elemento básico en muchas industrias gracias a su eficacia para proporcionar aislamiento y sellado de forma rápida y sencilla sin necesidad de equipos o materiales especializados. La espuma de poliuretano es un material reciclable y, de hecho, a través del reciclado químico de residuos de poliuretano se obtiene nueva materia prima para fabricar poliuretano de nuevo. Sin embargo, su explotación puede llegar a provocar una contaminación significativa debido a emisiones durante la producción, desperdicio de recursos y problemas de disposición final. Las sustancias químicas liberadas durante su fabricación y desecho contribuyen a la contaminación del aire, suelo y agua, haciendo que se le asocie con una alta contaminación ambiental.

Definición ciencia

Es un material compuesto principalmente por dos componentes: el poliol y el isocianato. Estos dos componentes reaccionan entre sí para formar la espuma de poliuretano. El poliol es un polímero que contiene múltiples grupos de hidroxilo (-OH). Los más comunes son poliéteres o poliésteres. Estos polímeros proporcionan la estructura básica para la espuma de poliuretano y también determinan sus propiedades físicas y químicas. El isocianato es un compuesto orgánico. Más comúnmente utilizado en la fabricación de espuma de poliuretano es el diisocianato de tolueno (TDI) o el diisocianato de difenilmetano (MDI). Reacciona con los grupos hidroxilo del poliol en un proceso llamado poliuretano “curado” o “endurecimiento”, formando enlaces químicos entre las moléculas y dando como resultado la formación de la estructura de la espuma. Además, pueden contener diversos aditivos para modificar las propiedades de la espuma. Algunos son agentes espumantes, retardantes de llama, agentes de expansión, pigmentos, estabilizadores UV, y agentes de control de la densidad y la dureza.

Procesamiento

El proceso de fabricación de espuma de poliuretano en aerosol involucra varias etapas: Obtención de materias primas: Isocianatos, Polioles, Agentes espumantes y otros aditivos Mezcla de materias primas: Los isocianatos y los polioles se combinan en proporciones específicas en un reactor. Se agregan también aditivos según la formulación deseada. Reacción de polimerización: La mezcla de isocianatos y polioles reacciona para formar poliuretano. Formación de la espuma: Durante o después de la reacción de polimerización, se introduce un agente espumante que genera gas, creando burbujas en la mezcla. Estas burbujas son lo que da a la espuma de poliuretano su estructura porosa y ligera. Acondicionamiento y moldeo: La espuma se puede acondicionar mediante procesos de corte, trituración o moldeado según la forma deseada. Para la producción en aerosol, la espuma se introduce en un recipiente presurizado con un propulsor para facilitar su aplicación en forma de aerosol. Envasado y distribución: Una vez que la espuma de poliuretano en aerosol se ha producido, se envasa en contenedores adecuados, como latas presurizadas. Estos productos están listos para su distribución y venta al público. Aplicación por parte del usuario final: El usuario final utiliza el aerosol de espuma de poliuretano según las

Propiedades

Normas

NormaTítulo
IRAM 1744Materiales aislantes térmicos. Paneles y planchas de espuma rígida de poliuretano. Requisitos.
IRAM 1748Materiales aislantes térmicos. Aplicación por proyección in situ de espuma rígida de poliuretano.
“UNE 92120-
2:98″
Materiales aislantes térmicos. Determinación de absorción de disolventes en espuma rígida de poliuretano para uso en aislaciones térmicas.
UNE 92120-
2:98
Productos de Aislamiento Térmico para Construcción. Espuma rígida de Poliuretano producida in situ.
UNE
92310:2003
riterios de Medición y Cuantificación para Trabajos de Aislamiento Térmico en Instalaciones Industriales
y en Edificación. Espuma rígida de poliuretano producida in situ por proyección

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
http://tacsa.com.ar/produc
to.php?catalogo_id=25
TUBOS DE AEROSOL CON
GATILLO
ESPUMA DE POLIURETA
NO
EXPANSIBL
E
ArgentinaTACSA
http://www.grupomontone

.com.ar/espuma-de-
poliuretano.html
TUBOS DE AEROSOLESPUMA DE POLIURETANOArgentina3M
http://www.anaerobicos.c
om/mercados/productos/7
3/espuma-de-poliuretano
TUBOS DE AEROSOLESPUMA DE POLIURETANOArgentinaSILOC
https://www.feroca.com/e

s/espumas-de-
poliuretano/618-easyflex-
60-espuma-flexible-de-
poliuretano-.html
BARRILESESPUMA
FLEXIBLE
DE
POLIURETA
NO
EspañaEASYFLEX

Bibliografía

http://www.elaplas.es/productos/acerca-del-poliuretano/
https://catalogo.iram.org.ar/#/home
https://aislaconpoliuretano.com/origen-obtencion-poliuretano.htm
https://www.geniolandia.com/13092793/cuales-son-los-peligros-del-polvo-de-resina-de-poliuretano
https://multimedia.3m.com/mws/media/1227527O/espuma-de-poliuretano.pdf
http://keffer.com.mx/pdf/ficha_tecnica_poliuretano.pdf
http://www.thermocal.es/la-mejor-forma-aislar/
http://www.thermocal.es/la-mejor-forma-aislar/
http://www.heypar.eu/wp-content/uploads/2018/02/ESPUMA-POLIURETANO.pdf
http://www.thermocal.es/la-mejor- Densidadforma-aislar/

Bambú

Síntesis

El Bambú es un material natural utilizado para todo tipo de funciones, tanto en cocina, decoración, agricultura, construcción, entre otros. Este se encuentra disponible mayormente en el Sudoeste Asiático tanto, como en América del Sur, material de muy buenas propiedades, elástico, liviano y con buena relación fuerza/peso superando al acero o maderas duras, de bajo costo, rápido crecimiento (hasta 30cm por día en algunas especies), buena en lugares de clima cálido por sus propiedades naturales de enfriamiento, en las cuales no retiene el calor en días cálidos, pero lo mantiene en días fríos. No requiere proceso de fabricación dependiendo de la función, estructuras pueden ser armadas directamente con el material recién cortado. Por otro lado, el material cuando se requiere puede ser procesado para crear láminas, recortes o lo que se necesite.

Contexto histórico, social y económico

     El origen del bambú se remonta a hace unos 40 millones de años, pero su utilización data aproximadamente del año 5.000 a.C., Neolítico de la Edad de Piedra, en China, donde aparecen los primeros productos fabricados en bambú, como flechas o materiales de construcción. Históricamente, el bambú ha satisfecho muchas de las necesidades diarias del pueblo chino. Durante la dinastía Song, el bambú se utilizaba para fabricar prendas de vestir, como capas para la lluvia, sombreros y zapatos. También se utilizaba como leña y para fabricar tejas y balsas. También es utilizado en el ámbito artístico como instrumento musical y para realizar esculturas grabadas en la caña o incluso decoraciones y artesanías. Desde aquel entonces el bambú tuvo y tiene incontables usos, desde su inicio como arma hasta el enfoque constructivo del material y con novedosos descubrimientos nuevos como los filamentos de bambú para impresoras 3D. 

           El Bambú al ser un material Natural corre con la ventaja de ser un material que no contribuye a la contaminación, el mismo libera un 30% más de oxígeno a la atmósfera y absorbe más dióxido de carbono que los árboles. Tiene un rápido crecimiento, no necesita ser replantado porque se auto regenera y su plantación (en caso de necesitarla) no deteriora las zonas en la que habita, reduce la lluvia y previene la erosión del suelo gracias a su extenso sistema de raíces. Este alcanza la madurez entre los 3 y 5 años (comparado con especies de árboles que pueden tardar entre 40 y 100 años en alcanzar su máximo crecimiento) pudiendo llegar algunas especies hasta los 40 metros de altura.

           Una de las principales razones por las que el bambú se considera un cultivo sostenible es que crece con facilidad. Además, los agricultores no necesitan invertir demasiado tiempo y esfuerzo en cultivarlo. Una vez plantado, el bambú prácticamente se cuida solo. Una vez cosechado, el bambú se regenerará rápidamente si los sistemas de raíces no se tocan.

Definición ciencia

Es un material de origen natural Estructuralmente el bambú se conforma de un tallo (denominado caña o colmo) es hueco y dividido por tabiques. Es uniforme en su desarrollo, liviano, resistente, suave, de rápido crecimiento, e imperceptiblemente cónico.
Internamente el material esta compuesto por agua, fibras de celulosa, lignina (Sustancia natural que forma parte de la pared celular de muchas células vegetales, a las cuales da dureza y resistencia), hemicelulosas y extractivos. Uno de los principios activos que está más presente en el bambú es el silicio, que es el elemento que proporciona las propiedades regenerativas al bambú. El silicio fomenta la sinterización del colágeno de nuestros tejidos, y, por tanto, se ralentiza el envejecimiento celular. La estructura está compuesta por fibras largas de celulosa, alineadas e inmersas en una matriz de lignina.

Procesamiento

El mejor momento para cosechar bambú es antes del amanecer cuando la mayor parte del almidón está presente sólo en el sistema de raíces debido a su método de transporte de almidón en fotosíntesis. También influye la atracción gravitacional de la luna, haciendo que entre el sexto y el octavo día después de la luna llena sea la mejor época para cosechar bambú y utilizarlo en la construcción.El bambú es un recurso renovable importante, pero es natural, por lo que es probable que tenga algunos depredadores. Si el bambú no se preserva, los insectos se comerían el bambú de adentro hacia afuera. Para prevenir esto hay varios métodos de procesamiento de bambú, que serán citados a continuación:Lixiviación de agua: Técnica que consiste en sumergir el bambú en agua limpia y corriente durante un período determinado. Las sustancias solubles en agua presentes en el bambú, como el almidón y los azúcares, se eliminarán lentamente.Fermentación: La idea es convertir el bambú en abono dentro de barro y hojas de árboles durante unos meses. Los microorganismos y bacterias del compost convierten los almidones y azúcares en ácido, reduciendo así la probabilidad de depredación por insectos.Ahumado: Ahumar cañas reduce el contenido de humedad del bambú recién cosechado y expulsa los azúcares que se encuentran en la caña. Además, los compuestos químicos que se encuentran en el humo son absorbidos por los tejidos del bambú y ayudan a protegerlos de los insectos.

Propiedades

Normas

NormaTítulo
Estructuras de bambú: Determinación de las propiedades físicas y mecánicas de los tallos de bambú: Métodos de pruebaISO 22157:2019
Revisión de la norma para estandarizar los ensayos de compresión paralela en la guadua angustifolia KunthISO
N314-22157
Bambú: Determinación de las propiedades físicas y mecánicas: Parte1 Requisitos 
(revisada en 2019)
ISO
22157-1:2004

Puesta en obra

Proveedores

DistribuidorFormatoNombreOrigenMarca
Bambuguazu
www.Bambuguazu.com
Paquetes de 50 unidades de 2 mts de lago y diámetros de15-18cm
Cercos de bambu a medida
BambuGuazu
Tigre Bambu www.tigrebambu.com.arTodo tipos de productos construidos de bambu Cañas de bambu de diversas secciones y especiesTigre bambu
Takuara Osky
www. Takuara- Osky.com.ar
Todo tipos de productos construidos de bambu
Cañas de bambu de diversas secciones y especies
Pergolas, techos y cercas
Takuara osky

Bibliografía

Www.ecologiaverde.com
www.dbambu.net
www.infonews.com
www.bambusofteare.es

Vidrio pirolítico Incoloro de baja emisividad

Síntesis

Está conformado por dos o tres capas de vidrio y contenido por un marco metálico, una de sus capas cuenta con un revestimiento de baja emisividad que permite que buena parte de la radiación solar de onda corta atraviese el vidrio y refleje la mayor parte de la radiación de calor onda larga. se puede conseguir incoloro, gris, verde y azul. También en espesores de 4mm y 6 mm.
El vidrio pirolítico de baja emisividad se aplica exclusivamente en componentes de doble vidriado con el propósito de mejorar la resistencia térmica de su cámara de aire. Uno de sus principales campos de aplicación es el vidriado de viviendas donde en la mayor parte de los casos se emplean vidriados transparentes incoloros. Cuando se lo emplea en unidades de DVH compuestas por un vidrio exterior de control solar, de color o reflectivo, también mejora la performance de control solar de las mismas en aproximadamente un 15%.

Contexto histórico, social y económico

La década de 1960 comenzó con importantes avances en la tecnología del vidrio. PPG desarrolló el primer vidrio arquitectónico revestido en 1963 utilizando el mismo proceso de deposición química húmeda para fabricar espejos, y perfeccionó su técnica al año siguiente para crear un producto reflectante.
La crisis energética de la década de 1970 resultó ser el catalizador para que gobiernos y empresas invirtieran en investigación y desarrollo para encontrar una solución pasiva a la ganancia solar.
Pilkington y la firma alemana Flachglas Group crearon los primeros recubrimientos de baja emisividad comercialmente viables utilizando capas delgadas de oro. Pero los recubrimientos produjeron un tono verde, no especialmente estético. Lo que llevó al fabricante de vidrio alemán a desarrollar el primer recubrimiento incoloro de baja emisividad utilizando capas de plata en 1981.
El conocimiento adquirido y los avances logrados durante este periodo han formado la base de la industria actual de baja emisividad.
En el proceso de vidrio pirolítico de baja emisividad se aplica un recubrimiento de óxido de estaño durante el proceso de flotación. Esto da como resultado un vidrio de capa dura que es muy robusto, pero con prestaciones inferiores a los vidrios que incorporan una o varias capas de plata.
El otro proceso para generar vidrios de baja emisividad es MSVD (Magnetron Sputter Vacuum Deposition) que se aplica después del proceso de flotación aplicando una o varias capas de plata consideradas “capa blanda” dando como resultado un vidrio de baja emisividad de altas prestaciones. Este tipo de vidrio es más vulnerable que un recubrimiento de capa dura y necesita protegerse de la atmósfera, por lo que siempre debe ensamblarse en unidades de vidrio aislante.
Su propósito era reflectar los rayos solares, reduciendo así la transmisión lumínica y calorífica hacia el interior y exterior de los espacios.
La reducción de consumo de energía fue de vital importancia en periodos de crisis debido a que se ahorraban costos y en climatizar una vivienda se perdían muchos kw/h debido a los acristalamientos.
El vidrio pirolítico de baja emisividad es un material costoso respecto a su tratamiento extra que brinda mejores prestaciones comparándolo con el vidrio flotado siempre.
La fabricación del vidrio utiliza materias primas naturales (más del 80%) o sintéticas sin riesgo de almacenamiento o de transporte y genera pocos residuos específicos. Sin embargo, para elaborar el vidrio, hay que utilizar energía, y en ese nivel es cuando hay todavía un margen de maniobra para minimizar los residuos. Por eso las palabras claves de los vidrieros en materia de medio ambiente son: economía de energía, control de la contaminación atmosférica y reciclado.
La industria del vidrio tiene capacidad para modificar sus procedimientos para producir más «limpio». La producción del vidrio es una tecnología extremadamente antigua.
Si bien la fabricación del vidrio tiene un impacto ambiental negativo, no es tan negativo si lo comparamos con la producción de otros materiales como lo son los plásticos, químicos, polímeros, etc. Una muy buena característica del vidrio es que se puede reciclar múltiples veces antes de que este sea contaminado y ya no se pueda reutilizar.
Propiedades:
Reducción de la luz en el interior
Reducción de la temperatura
Ahorro de energía en temporadas de verano e invierno

Definición ciencia

El vidrio común se prepara fundiendo una serie de materias primas muy abundantes, como carbonato de sodio, caliza, dolomita, dióxido de silicio (vidrio de baja emisividad 96% silice), óxido de aluminio (alúmina), y cantidades pequeñas de agentes aditivos.
En el proceso de vidrio pirolítico de baja emisividad se aplica un recubrimiento de óxido de estaño durante el proceso de flotación.

Procesamiento

El proceso de desarrollo para la construcción de este vidrio es el siguiente: al ser principalmente un material fabricado en masa tiene el mismo proceso que los otros tipos de vidrios. Tras la extracción de arena silícea, soda cáustica y cal en minas a esta materia prima de origen pétreo se la funde hasta una temperatura de 1600°C conformando así el vidrio en estado líquido. Luego a este líquido se lo dispone en una pileta de estaño llamado flotado donde se le da el espesor y el tamaño de la hoja de vidrio, luego se la deja enfriar para su acople y posteriormente se despacha para la venta.

Propiedades

TIPO DE 
PROPIEDAD
PROPIEDAD O CARACTERÍSTICA VALOR TÍPICO
Físico – químicaTransmisión 1.8 W/M2°K
Resistencia ambiental ¹* A I B I C I D I E I F I G
TérmicaLUZ VISIBLE: Transmisión (%) 75%
LUZ VISIBLE: Reflexión int (%) 11%
LUZ VISIBLE :Reflexión ext (%) 12%
Óptica, Acústica, 
entre otras
Emisividad (E)0.2 (el vidrio común tiene un valor de 0.8)
COEFICIENTE DE SOMBRA 0.73 (5)
MecánicaModulo de rutura Entre 1850 y 2100 kg/cm2
Punto de ablandamiento Aproximadamente 730°C
Coeficiente de dilatación lineal 9 x 10-6°C
Resistencia a tracción Entre 300 y 700 kg/cm2
Resistencia a compresión Aproximadamente 10.000
kg/cm2

Normas

NormaTítulo
IRAM 12573“Método para la determinación de la resistencia a la temperatura y a la humedad”
IRAM 11564 y ASTM c236“Transmitancia térmica de ventanas (en posición vertical)”
IRAM 12572“Vidrios de seguridad planos, templados, para la construcción”
IRAM 12559“Vidrios planos de seguridad para la construcción. Método de determinación de la resistencia al impacto” (5/5/89)
IRAM 12565“Vidrios planos para la construcción para uso en posición vertical” (Agosto del 1994)
IRAM 12846“Vidrio plano con revestimiento pirolítico. Requisitos de calidad para inspección visual”
IRAM 12565¨Método para el cálculo del espesor de vidrios en posición vertical sometidos a la acción del viento¨

Puesta en obra

Se cortan las piezas de vidrio una vez dada la medida  a utilizar.
Producción de ventanas con marcos transformándose  en DVH.
Puesta en obra del vidrio y manipulación del mismo a  mano de los operarios.
Una vez lista la colocación, se inspecciona que todo  esté en orden sin ningún problema.

Proveedores

DistribuidorFormatoNombreOrigenMarca
Vidrio MDT https://www.mdtvidrio.com /producto/CONTROLSOLAR/SolarE/17Dimensiones 3300mm x Solar-e Argentina vasa 2440mm Espesor 6mmSolar-eArgentinavasa
https://www.vasa.com.ar/di Espesor 6mm stribuidores-certificados/Dimesiones 3300mm x Vidrio low E Argentina vasa 2440mm https://www.vasa.com.ar/di Espesor 6mmVidrio low EArgentinavasa
Pilkington Solar-E™ 811 Madison Ave Toledo, Ohio 43604-5684 buildingproducts.pna@ns g.com Tel 800 221 0444 l Fax 419 247 4573Dimesiones 3300mm x Ohio, EE.UU 2440mm Espesor 6mmPilkington Solar-E™ and Solar-E™ PlusOhio, EE.UUNSG group

Bibliografía

(1) Vidrio bajo emisivo: Historia y proceso de fabricación
https://www.cristaleriareina.com/vidrio-bajo-emisivo-1-historia-y-proceso-de-fabricacion/
(2) Vidrio de control solar: Características y tipos
https://www.cdt.cl/vidrio-de-control-solar-caracteristicas-y-tipos/
(3) Vidrio Reflectivo- Covinhar
https://www.covinhar.com/vidrio-reflectivo/
(4) Hard Coated. Pilkington Eclipse
http://www.vidrieriaespanola.com.ar/arq/Pilkington-eclipse-Hard-Coated.php#:~:text=El%20vidrio%20reflectivo%20pirol%C3%ADtico%20es%20ideal%20para%20emplear,molestias%20producidas%20por%20el%20exceso%20de%20luz%20natural
(5) Solar-E – VASA
https://www.vasa.com.ar/wp-content/uploads/2017/03/Alta.Solar-E-1.pdf
(6) AMG-Mirror & glass
https://amgmirrorandglass.ca/blog/glass-innovations/hard-or-soft-low-e-coating-which-is-right-for-you/#:~:text=A%20pyrolytic%20process%20produces%20hard,while%20it%20is%20still%20molten
(7) Metro – Perfonmance glass
https://metroglass.co.nz/design-centre/glass-catalogue/glass/low-e-glass/
(8) El Vidrio y la transmisión del color – Vidriera española
https://www.vidrieriaespanola.com.ar/arq/El-vidrio-y-la-transmision-de-calor.php
(9) Método corto para determinación del índice de penetracion de humedad en unidades de doble vidriado hermético
https://core.ac.uk/download/pdf/328877745.pdf
(10) Manual del vidrio plano
https://www.caviplan.org.ar/wp-content/uploads/2022/09/Manual_VP___4a.edicion.pdf

Zócalo de acero inoxidable

Síntesis

El acero inoxidable es una aleación de hierro que comprende de 10.5 a 30 % de cromo. El método de fabricación es el momento en el que se funden todos los componentes y se genera la aleación entre sus componentes.

Es un material que cuenta con cientos de distribuidores/fabricantes en el país como en países limítrofes o muchos más en países Europeos o EEUU. Son principalmente accesorios de terminaciones, se utilizan entre las paredes y los pisos en los ángulos rectos para conseguir un mejor acabado y una limpieza más fácil.

A su vez, es posible utilizar este artefacto como decoración minimalista tanto en hogares como en oficinas gracias a sus terminaciones y a su facil colocacion.

Contexto histórico, social y económico

No hay una fecha específica, ni lugar específico que den cuenta del origen de este material, se estima que fue a fines del siglo XIX o principios del siglo XX, pero el acero inoxidable empezó a ser utilizado en la construcción en los inicios del siglo XX, una de las primeras obras importantes proyectadas con este material es el Edificio Chrysler.

El material se cree que surgió alrededor del año 1872, de hecho, los científicos ingleses John T. Woods y John Clark, registraron una patente de una aleación de hierro con componentes muy cercanos a lo que conocemos hoy como acero inoxidable. Es importante aclarar que hasta 3 años después, en 1875, gracias al francés Brustlein, se comenzó a poner en marcha el verdadero desarrollo de este material, también fue él quien remarcó que el contenido de carbono debía ser muy bajo (0.15%). En el correr de los años, entre 1900 y 1920 principalmente, se empezaron a intentar regular estas nuevas aleaciones, con normas, nomenclaturas, etc.Al ser un material que se descubrió de manera accidental, podemos decir que no tenía un propósito como tal, pero lo que sí sucedió es que sus primeros usos no fueron en el rubro de la arquitectura, sino que fueron en industrias de utensilios, herramientas, armas y hasta vehículos terrestres o no terrestres.
No fue sino hasta 1930 que se implementó el uso del material en la arquitectura, para elementos como barandas de mano, mobiliario, mesadas, campanas extractoras de humo, escaleras, marcos… y hasta zócalos. Los utilizados principalmente son el AISI 304, AISI 316 y el AISI a430, en este informe nos centramos en hablar del AISI 304, que es el más utilizado para producir zócalos.

Este material tiene la característica de tener precios de entre $1500 y $5000 la tira (2.5mts) suele ser utilizado como detalles en viviendas de alto valor y en instalaciones donde la higiene es una necesidad principal como en hospitales, clínicas, laboratorios y hasta en oficinas. La aparición de este material en la arquitectura permitió utilizar el acero en lugares que antes no se podía por la baja resistencia a la corrosión que tiene el acero solo.

La producción de acero inoxidable puede tener un impacto ambiental significativo debido al alto consumo de energía, la emisión de gases de efecto invernadero y la generación de residuos peligrosos. Esta implica la fusión de metales como hierro, níquel, cromo y molibdeno a altas temperaturas, lo que consume grandes cantidades de energía. Además, durante el proceso de producción se emiten gases de efecto invernadero como dióxido de carbono y óxidos de nitrógeno.

Además, este proceso puede generar residuos peligrosos, como escoria y polvo de horno, que pueden contener metales pesados y otros contaminantes que pueden ser tóxicos para la salud humana y el medio ambiente. Sin embargo, es importante destacar que las formas de su producción han mejorado significativamente en los últimos años en términos de eficiencia energética y reducción de emisiones de gases de efecto invernadero. Las empresas están implementando tecnologías más avanzadas y procesos de reciclaje para minimizar el impacto ambiental.

Definición ciencia

El acero inoxidable tipo 304 es un acero inoxidable austenítico -que tiene elementos formadores de austenita, como el níquel, el manganeso y el nitrógeno- serie T 300. Tiene un mínimo de 18% de cromo y 8% de níquel, combinado con un máximo de 0.08% de carbono. Se define como una aleación austenítica de cromo-níquel.

Procesamiento

La fabricación se puede dividir en 3 instancias:


Fabricación primaria: El proceso empieza con la selección y acopio del material que posteriormente se va a fundir. Se utiliza la chatarra férrica a la que se le añade cierta cantidad de ferroaleaciones y otros minerales que han pasado por un riguroso proceso de control garantizando su seguridad y calidad.


Aceración o acería: las chatarras se funden en hornos de arco eléctrico de más de 100 toneladas de capacidad gracias a los electrodos de grafito que permiten alcanzar altas temperaturas de fusión. El acero líquido se lleva a un convertidor donde se sopla con oxígeno y gas inerte y finaliza con el afino de la aleación, reduciendo el nivel de carbono de caldo, recuperando el metal presente en los óxidos metálicos y disminuyendo el contenido en azufre. Se solidifica a través de una máquina de colada continua.


Laminación: En la laminación en caliente se reduce el espesor o diámetro aprovechando la mayor ductilidad del material a altas temperaturas, también puede realizarse la laminación en frío en la que se obtiene el espesor o diámetro final sin un calentamiento previo.

Terminación: Existen muchos tipos y formas de darle terminación a los zócalos, pero las principales son: acabado esmerilado, acabado brillante, acabado cromo mate, entre otros.

Propiedades

TIPO DE PROPIEDADPROPIEDAD O CARACTERÍSTICA VALOR TÍPICO
Físico – químicaDensidad 7,3 g/cm³
Resistencia ambiental ¹*  A  I  B  I  C  I  D  I  E  I  F  I  G
Punto de fusión1400-1455° C
Conductividad Térmica15/16 W/m K
MecánicaMódulo de elasticidad190/210 GPa
 Resistencia a la tracción515 MPa
Dureza Brinell160/190 HBW (unidad del ensayo)
Alargamiento60%
Reducción de área70%
Soldabilidaddesde los 426-900° C
Térmica Capacidad calorífica específica500J (Kg-K)
Coeficiente de dilatación térmica100C de 16.0-17.30 x 106 C-1
EléctricaResistencia eléctricade 70 – 72 µOhmcm
Magnetismonulo
NORMATÍTULO 
Esta norma establece las especificaciones estándar para el acero inoxidable austenítico, ferrítico y martensítico ASTM A240/A240M-20
Esta norma establece las especificaciones estándar para las barras de acero inoxidable para aplicaciones generales ASTM A276
Esta es una especificación adicional para el AISI 304, que establece límites más bajos en el contenido de carbono para mejorar la resistencia a la corrosión en ambientes corrosivos. AISI 304L
Specification and Datasheet / Esta es una especificación y hoja de datos técnica proporcionada por el fabricante que establece las propiedades mecánicas y químicas del acero inoxidable AISI 304. AISI 304
Stainless Steel

Puesta en obra-

Tomar la medida del lugar a colocar el zócalo.
Cortar el zocalo a la medida antes tomada, haciendo el corte a 45°.
Colocar pegamento vinílico en la parte posterior del zócalo.
Colocar el zócalo en su lugar.

Proveedores

DISTRIBUIDOR LOCAL FORMATO NOMBREORIGENMARCA
ATRIM GLOBAL

0810-22-ATRIM (28746)
ventasatrim@atrimglobal.com
https://www.atrimglobal.com.ar
Se comercializa en perfiles de:
h:60/80mm
a:10/12mm
Largo:2.50m
Zócalo SLIMARGENTINAATRIMGLOBAL
DecoParquet

+54 9 11 3167 9871
ventas@decoparquet.com.ar
info@decoparquet.com.ar
https://decoparquet.com.ar
Se comercializa en perfiles de:
h:25/38/60/80,,
Largo:2.50m
Zócalo Retro FitARGENTINADecoparquet
TodoGriferia

+54 9 11 2182-5236
https://www.todogriferia.com
Se comercializa en perfiles de:
h:80mm
a:12mm
Largo:2.5m
Zocalo de Acero Inoxidable Esmerilado BrillanteARGENTINAATRIMGLOBAL
Palsa Materiales
Construccion S.A

+34 968501406
info@e-palsa.com
https://www.atrimglobal.com.ar

Se comercializa en perfiles de:
h:60/80/100/120/250
Largo:2.50m
Rodapie Acero Inoxidable. Modelo 25060BESPAÑA RODIX

Bibliografía

Poliacetato de vinilo

Síntesis

Resinas vinílicas en solución acuosa, tiene un aspecto líquido blanco. En la industria de los adhesivos se obtiene por métodos convencionales de polimerización por adición o por emulsión. Para iniciar la polimerización es común activar la doble ligadura del vinilo ya sea térmicamente, o fotoquímicamente por reacción con un radical libre iniciador o por reacción con un catalizador iónico. La polimerización de adición industrial, inician por medio de un radical libre obtenido de la descomposición de agentes oxidantes. Preparación: Agua depende de: Interior: 1:4 por kg de material; Exterior: 2:4 por kg de material; Revestimientos cementicios: 1:9 por 5 kg de material; Pinturas a la cal: 1:5 cada 3,5 kg de material; Para consolidación de superficies: 1:8 primera mano y 1:4 segunda mano. Adicionar al agua de empaste a la mezcla según las recomendaciones.

Contexto histórico, social y económico

El material fue creado en el año 1912 por Fritz Klatte, ocurrió más de 100 años después de la revolución industrial y 2 años antes de la primera guerra mundial. 

La posición socioeconómica de Alemania se estaba induciendo a un cambio. La industrialización progresó de forma dinámica en Alemania impulsada por subsidios y legislaciones. Los fabricantes alemanes comenzaron a captar los mercados domésticos de las importaciones británicas y también a competir con la industria británica en el extranjero. Al principio de la guerra franco-prusiana, Alemania se convirtió en la potencia económica dominante en el continente y su proceso de industrialización se centró en la industria pesada, para dar sostenimiento de su red ferroviaria y apoyar el desarrollo de sus fuerzas militares. 

El poliacetato de vinilo (PVA) fue desarrollado por el químico alemán Fritz Klatte mientras trabajaba para la empresa alemana Wacker Chemie en la década de 1920. Surgió como resultado de la necesidad de un adhesivo más versátil y resistente en diversas aplicaciones industriales. 

El propósito original del PVA era servir como un adhesivo eficaz para unir una variedad de materiales, como madera, papel, tela y cuero. Se buscaba un material que pudiera resistir condiciones ambientales adversas y proporcionar una unión duradera y confiable. 

Si bien su propósito era ser un adhesivo, con el tiempo se ha expandido su uso a una amplia gama de aplicaciones, incluyendo recubrimientos, películas, textiles y productos farmacéuticos. Actualmente, se utiliza en la fabricación de empaques, revestimientos protectores, productos médicos y más. 

El PVA comenzó a producir y utilizarse comercialmente en la década de 1920, coincidiendo con un período de intensa innovación industrial y avances en la química de materiales. Esta época estuvo marcada por la creciente demanda de materiales sintéticos y mejoras en la tecnología de producción. 

La década de 1920 fue testigo de un cambio significativo, con la industrialización en pleno auge y un enfoque creciente en la innovación y la producción en masa. Los avances en la química de polímeros y la síntesis de materiales sintéticos reflejaron este cambio hacia una sociedad cada vez más tecnológica. 

Su aparición introdujo cambios fundamentales en la industria de los adhesivos y recubrimientos, proporcionando una alternativa versátil y duradera a los materiales tradicionales. Su resistencia a la humedad y su capacidad de unión con una variedad de sustratos revolucionaron numerosas aplicaciones industriales y de consumo. 

El poliacetato de vinilo se aplica en una amplia variedad de áreas y disciplinas, incluyendo la industria del embalaje, la construcción, la fabricación de muebles, la industria textil, la medicina y la farmacéutica. 

Este no se considera extremadamente costoso en comparación con otros polímeros de alto rendimiento. Sin embargo, el precio puede variar dependiendo de la calidad, la pureza y la demanda del mercado en un momento dado. Es importante tener en cuenta que el costo del PVA puede fluctuar debido a factores externos, como cambios en el precio de las materias primas utilizadas en su fabricación, la disponibilidad de tecnologías de producción más eficientes y cambios en la demanda del mercado. 

El poliacetato de vinilo es abundante en la tierra ya que su elaboración es artificial mediante laboratorios. Encontramos el PVA en muchos productos plásticos que usamos diariamente. Existen empresas dedicadas al reciclaje de los polímeros mediante procesos de trituración para la elaboración de nuevos polímeros plásticos, pero poliacetato de vinilo al ser un tipo de polímero elastómero también es sometido a procesos de reciclado pero en menor cantidad que los otros polimeros plasticos. La producción e incineración de productos polímeros contribuye en gran medida al cambio climático. Los residuos plásticos también ahogan nuestras vías fluviales, contaminan nuestros océanos, matan la vida silvestre y se infiltran en nuestra cadena alimentaria. 

El poliacetato de vinilo (tacuru) comenzó a utilizarse en la construcción en la década de 1950. A medida que se desarrollaban técnicas de adhesión más avanzadas y se descubren sus propiedades útiles, comenzó a ganar popularidad como adhesivo y aglutinante en la industria de la construcción. En ese momento, se reconoció su capacidad para unir una variedad de materiales de construcción, como madera, hormigón, cerámica y metal, lo que lo convirtió en una opción valiosa para diversas aplicaciones, como la instalación de revestimientos, la construcción de muebles y la fabricación de productos prefabricados.

Definición ciencia

El poliacetato de vinilo está compuesto por Resinas vinílicas en solución acuosa y aditivos químicos especiales formando un adhesivo blanco líquido/espeso. 

La estructura de este aditivo químico del polímero se componen sucesiones de grupos vinil acetato con fórmula general (C4H6O2)n El poliacetato de vinilo es un material de tipo ampliamente usado de adhesivo, que se refiere indistintamente como cola para madera, cola blanca o cola de carpintero.

Procesamiento

El proceso de polimerización se efectúa de la siguiente manera: Inicialmente se adiciona en el reactor de polimerización la solución del coloide protector (sustancia que ayuda a mantener las características de homogeneidad en un sistema polimérico), la cual se calienta a una temperatura promedio de 80ºC con el fin de mejorar la solubilidad del monómero de vinil acetato en el agua. Posteriormente se adiciona el o los monómeros, el catalizador y se inicia la agitación. El calentamiento que se debe suministrar inicialmente en el reactor de polimerización se mantiene mediante una camisa de calentamiento, en donde se suministra vapor. La reacción de polimerización es exotérmica, por cuanto una vez iniciada la reacción es necesario retirar el vapor de la camisa y suministrar un suficiente volumen de agua de enfriamiento para mantener la temperatura de reacción, que dependiendo de la tecnología y capacidad de la planta puede variar de 65 a 80ºC. Una vez el polímero ha sido hecho, probado y caracterizado, aún necesita ser sujeto a las pruebas de comportamiento adhesivo. La adhesión a superficies específicas; resistencia de la unión a envejecimiento temperaturas extremas, características de aplicación apropiadas y su economía son unas pocas de las consideraciones importantes

Propiedades

TIPO DE PROPIEDADPROPIEDAD O CARACTERÍSTICA VALOR TÍPICO
Físico – químicaDensidad 
Resistencia ambiental ¹* 
MecánicaLímite de elasticidad
 Fuerza de Tensión
Térmica Punto de fusión
Punto de ebullición
Óptica, Acústica, entre otrasMaterial opaco
Alta conductividad eléctrica
Reciclable
NORMATÍTULO 
IRAM 45038Adhesivos a base de polímeros en sistema de dos o más componentes para revestimientos en general.
IRAM 45050Adhesivos para revestimientos cerámicos, guía orientativo para su selección. 
IRAM 45037Adhesivos para revestimientos cerámicos. A base de polímeros, en solución. 
IRAM 45051Revestimiento cerámicos. Práctica recomendada para su colocación con adhesivos a base de polímeros
IRAM 45068Mezclas adhesivas y pastinas para revestimientos cerámicos. Determinación de la deformación transversal

Puesta en obra-

Pilkington Pyrostop solo debe ser utilizado como parte de un sistema resistente al fuego aprobado, es decir, el vidrio en un marco especialmente diseñado junto con los materiales de vidriado y las fijaciones a la estructura circundante. El sistema en su conjunto tiene que ser aprobado como resistente al fuego. El marco debe ser de una clasificación contra fuego equivalente a la del vidrio
1-Sellador de silicona
2-Cinta de acristalamiento
3-Canales para ventilación y drenaje
4-Fijación a los alrededores de la estructura
5-Vidrio Pyrostop
6-Bloque de ajuste
7-Marco de madera o aluminio 8-Sellador
En todos los casos, la rebaja de acristalamiento debe estar libre de cualquier material suelto. antes y después del acristalamiento, y el vidrio debe enmarcarse en todos los bordes. Cualquier contacto directo entre el vidrio y el material del marco, o entre vidrio y vidrio, no está permitido bajo ninguna circunstancia.
A- Profundidad de rebaja (min. 20 mm)
B- Separación del borde (altura del bloque de ajuste) (min. 5 mm)
C- Agarre (15 mm – 25 mm)
D- Cubierta de borde total (incluida la cubierta de sellador) (máx. 35 mm)
E-Ancho de canal de acristalamiento (F + 2 x G)
F- Espesor del vidrio
G- Espacio libre (aprox. 4 mm)
H- Ancho del marco (depende del material del marco y la clasificación de resistencia al fuego)
I- Ancho del bloque de ajuste (Espesor del vidrio F + 2mm)

Proveedores

DISTRIBUIDOR LOCAL FORMATO NOMBRE ORIGEN MARCA
Reino Cerámicos AV. PTE PERÓN 4301 / 52609023Baldes de 1, 4, 10 y 20  litros. Tambor de 200 litrosAditivo Vinilico Multiuso Argentina Webber (saint gobain)
Sodimac Av. San Martin 421 / 41274100Baldes de 1, 4, 10 y 20  litros. Colocación de porcelanatosArgentinaWebber (Saint gobain)
EasyBaldes de 1, 4 y 10 litrosAdhesivo multiuso líquido de poliacetato de vinilo Argentina Webber
KONKOR SERKON SA AV.DE LOS CONSTITUYENTES 2036Baldes de 4 y 10 litrosRevestimientos decorativos Argentina Isover

Bibliografía

  • FUENTES DE NORMATIVA 
  • Iram 45050: https://iramcoleccion.org.ar/norma.aspx?ID=7927# 
  • Iram 45038: https://iramcoleccion.org.ar/norma.aspx?ID=1356# 
  • Iram 45037: https://iramcoleccion.org.ar/norma.aspx?ID=1355 
  • Iram 45051: https://iramcoleccion.org.ar/norma.aspx?ID=7928 
  • Iram 45068: https://iramcoleccion.org.ar/norma.aspx?ID=1381# 
  • FUENTES DE FICHAS Y DATOS DEL PRODUCTO: 
  • Densidad: https://www.ar.weber/mezclas-de-albanileria/tacuru 
  • Peso Molecular: https://www.ar.weber/mezclas-de-albanileria/tacuru#tab-product_documentation Deformación transversal: https://iramcoleccion.org.ar/norma.aspx?ID=1381# 
  • Potencial Hidrofugo: https://www.ar.weber/mezclas-de-albanileria/tacuru#tab-product_documentation Temperatura de Transmicion vitrea: https://www.mexpolimeros.com/pva.html 
  • Solubilidad: https://www.silverson.es/images/uploads/documents/Preparacion-de-soluciones-de-alcohol-poli-vinilico.pdf Degradacion: https://estrucplan.com.ar/poliacetato-de-vinilo-pvac/ 
  • FUENTES DEL DESARROLLO DEL MATERIAL: 
  • https://tecnologiadelosplasticos.blogspot.com/2012/02/el-poliacetato-de-vinilo-acetato-de.html

Pyrostop®

Síntesis

Pyrostop es un vidrio cortafuegos de seguridad monolítico, transparente, laminado, totalmente aislante, resistente al fuego y al impacto que bloquea la transmisión de calor conductivo y radiante mientras maximiza el paso de luz natural y la visibilidad.

Está compuesto por varias capas de vidrio flotado bajo en hierro. Estas capas están a su vez intercaladas por laminas transparentes de un gel intumescente (es decir que tiene la capacidad de hincharse al calentarse creando una capa aislante alrededor de los elementos que recubren) ó silicato de sodio. Cuando se expone al fuego, el panel de vidrio que mira hacia las llamas se fractura, pero permanece en su lugar mientras la capa intermedia forma espuma inmediatamente para lograr un escudo aislante grueso y resistente que absorbe la energía térmica de un incendio hasta por 180 minutos.

Al ser un vidrio cortafuegos (clasificación EI) cumple con los criterios de parallamas(E): estabilidad mecánica, estanquidad a las llamas, humos y gases inflamables y además aísla térmicamente durante un incendio.

Puede ser aplicado en puertas, Tabiques acristalados, unidades con persianas integrales, fachadas, suelos, etc. Disponible para su uso con marcos de acero, aluminio y madera. en una amplia gama de tamaños.

Contexto histórico, social y económico

Los vidrios Pyrostop fueron desarrollados por la empresa Pilkington (Reino Unido) y aprobados por primera vez en el año 1978 para un sistema de puerta resistente al fuego de la empresa Schörghuber.  Ese mismo año fueron introducidos al mercado: Pyrostop EI 30 de 15 mm de espesor y EI 90 como composición de tres unidades de vidrio. A partir de ahí se lograron gran cantidad de avances tecnológicos que permitieron potenciar las capacidades que presenta el vidrio hasta llegar a la variedad de Pyrostop que tenemos hoy en día. Sus propiedades novedosas son que bloquea de manera eficaz la transmisión de calor, llamas, humos y gases al tiempo que optimiza la iluminación. se puede aplicar en casos que requieren la protección de hasta EI 180 (según clasificación  EN 13501-2)

Para entender el origen del vidrio Pyrostop primero hay que remontarse hacia descubrimiento del vidrio flotado. Fue inventado por el ingeniero Sir Alastair Pilkington en el Reino Unido durante la década de 1950, luego de 10 años de investigación y experimentación, fue comunicado al mundo y patentado en 1959, Al realizar la primera aplicación comercial exitosa para formar una cinta continua de vidrio usando un fundido de estaño de baño en la que fluye el vidrio fundido sin obstáculos bajo la influencia de la gravedad. A partir de este nuevo método para fabricar vidrio se podía obtener una pieza perfectamente plana, de elevada transmisión luminosa y sin distorsión óptica sin tener que llevar a cabo otro proceso posterior para lograrlo. En poco tiempo se convirtió en el método de producción más utilizado, reemplazando definitivamente al método clásico de vidrio estirado que quedo totalmente obsoleto. Gracias a sus ventajas, es totalmente adecuado para cualquier tipo de aplicación como vidrio plano. Este tipo de vidrio es el más utilizado en los productos de consumo. No es necesario pulirlo y su flexibilidad estructural durante la producción, lo hace ideal para moldearse y doblarse fácilmente en una gran variedad de formas mientras se encuentra lo suficientemente caliente.

A pesar de que el proceso de fabricación del vidrio flotado requiere usar una gran cantidad de energía para poder llegar a tan altas temperaturas y genera una alta emisión de carbono, el vidrio tiene algunas ventajas a la hora de hablar de sustentabilidad. La principal es ser un material que proviene de elementos que podemos encontrar fácilmente en la naturaleza, ya que la mayor parte de composición es arena. Otra ventaja del vidrio es que puede reciclarse gran cantidad de veces sin modificar sus propiedades.   

Definición ciencia

Está compuesto por varias láminas de vidrio flotado bajo en hierro, Intercaladas por capas de gel intumescente unidas por butiral de polivinilo. Este gel está compuesto por una matriz ligante, resina o emulsión, fuente de ácido (polifosfato de amonio), fuente de carbón (polialcohol), agente propelente (melamina) y sal metálica (dióxido de titanio). Estos componentes son precisamente los que reaccionan ante las altas temperaturas de un incendio, liberando compuestos ricos en carbón que finalmente forman la espuma antes mencionada.

El óxido de hierro es un ingrediente común en el vidrio estándar porque reduce las temperaturas durante el proceso de fabricación. Como resultado, el cristal lleva un tinte verde.

El vidrio bajo en hierro es un vidrio flotado con hierro que ha sido procesado a través de un horno de templado para incrementar su resistencia al impacto, a cargas mecánicas y a rotura por choque térmico. Cuando se rompe, el vidrio bajo en hierro templado se fractura en pequeños fragmentos de vidrio que reducen la probabilidad de lesiones graves.

Procesamiento

La materia prima básica en la producción del vidrio flotado es arena (72,6%) luego se agregan a la mezcla carbonato de sodio (13%) piedra caliza (8,4%) dolomita (4%) alúmina (1%) y vidrio reciclado.  Los ingredientes se cargan en un horno donde se mezclan y comienza el proceso de fusión, el cual se calienta a aproximadamente 1500 °C hasta llegar al estado líquido. 

El vidrio liquido se vierte continuamente desde el horno a un baño de estaño fundido, el líquido flota sobre el estaño fundido y se extiende sobre el para producir una capa de espesor constante mientras se enfría y endurece hasta estar lo suficientemente rígido (600 °C aprox) como para rodar sobre los rodillos en los hornos de enfriamiento. A pesar de la tranquilidad con la que se forma el vidrio flotado, se desarrollan tensiones considerables en la cinta a medida que se enfría. Demasiado estrés y el vidrio se romperá debajo del cortador. Para aliviar estas tensiones, la cinta se somete a un tratamiento térmico de recocido en un horno largo conocido como Lehr.

Luego se corta mediante cuchillas de diamante que se deslizan a través de toda la superficie. Cada capa de vidrio es inspeccionada mediante un escaneo automático para detectar pequeños defectos y/o burbujas.

Luego, estas grandes hojas de vidrio llamadas “jumbo” son colocadas en soportes listas para el envío. Todo este proceso dura aproximadamente 50 horas. Y es capaz de producir 2000 toneladas de vidrio. El vidrio Pyrostop utiliza estas mismas hojas intercaladas por capas de gel intumescente unidas al vidrio con butiral de polivinilo.

Propiedades

Entre 25 y 47 % dependiendo del color y espesor
del vidrio
TIPO DE PROPIEDADPROPIEDAD O CARACTERÍSTICA VALOR TÍPICO
Físico – químicaDensidad  (2368.42 kg/m³)
Resistencia ambiental ¹*  A  I  B  I  C  I  D  I  E  I  F  I  G
Resistencia frente:Agua= clase 3 (DIN52296) Ácido= clase 1 (DIN12116)
Alcalino = clase 2 (DIN 52322 e ISO 695)
MecánicaDureza6 a 7en la escala de Mohs
Tracción(entre 29.42MPa – 68.64MPa)
Compresión(800 – 1000 MPa)
Flexión(45 MPa)
Modulo de rotura181.42MPa – 205.93MPa
Térmica Conductividad térmica(1.05 W/mK)
Coeficiente de dilatación lineal20 – 220°C de temperatura, dicho coeficiente es: 9 x 10 -6 °C
Resistencia al fuego30     15mm (EN 13501-2)
60    23mm (EN 13501-2)
90     37mm (EN 13501-2)
120 58mm (EN 13501-2)  
Transmisión de luzEntre 25 y 47 % dependiendo del color y espesor del vidrio
NORMATÍTULO 
EN 13501-2 Clasificación en función del comportamiento frente al fuego de los productos de construcción y elementos para la edificación
ANSI Z97.1-Materiales de acristalamiento de seguridad utilizados en edificios 
-Especificaciones de rendimiento de seguridad y métodos de prueba
ASTM E119Standard Test Methods for Fire Tests of Building Construction and Materials

Puesta en obra

Proveedores

DISTRIBUIDOR LOCAL FORMATO NOMBREORIGENMARCA
VASA

/https://www.vasa.com.ar
15 mm
18 mm
21 mm
27 mm
37 mm
40 mm
50 mm
56 mm
PYROSTOPARGENTINA VASA TECHNOLOGY
DISVIAL S.A

 Tel: (011) 4519 6308

http://www.disvial.com.ar/ind ex.html
 
No especificaPYROSTOPARGENTINA VASA TECHNOLOGY
Carpeal 

Tel: (+54-11) 4488-7838
  https://www.carpeal.com/vidri
os/
No especificaPYROSTOPARGENTINA VASA TECHNOLOGY

Wideprint

WhatsApp: +54 9 11 6375-
7111

https://wideprint.com.ar/prod uctos/pyrostop-vasa/
No especificaPYROSTOPARGENTINA VASA TECHNOLOGY
JOSÉ TRENTO VIDRIOS

Tel: +54 11- 5263 – 8010 /
8020 / 8030 / 8050

https://www.trentovidrios.com
.ar/contacto/
15 mm
E 10 mm
I 21 mm
E 13 mm
I 37 mm
E 10 mm
I 50 mm
E 13 mm
PYROSTOPARGENTINA VASA TECHNOLOGY

Bibliografía

Bandeja portacables

Síntesis

Se encuentra  compuesto principalmente de acero, pasado por un proceso químico de índole, galvanizado.  En el método de fabricación se emplean chapas de acero, posteriormente cortadas en un espesor que varía entre 0.7 mm y 0.9 mm. Luego se la pasa por una máquina prensa perforadora, que le da su conformación de bandeja “perforada”. Por último, se lo somete a un bañado en zinc caliente a 440°C, proceso el cual le dará resistencia al material a la corrosión.  

Su aplicación está relacionada directamente con la industria arquitectónica e ingenieril, aplicada al término de sostener sus instalaciones eléctricas.

Contexto histórico, social y económico

Las bandejas portacables empezaron a desarrollarse a nivel mundial por la incorporación y el descubrimiento de una nueva tecnología que involucraba el uso del acero como tal, procesándolo para tener mejores propiedades y que su uso fuera más eficaz.  Las chapas de acero galvanizado se conformaron como tal en los años 1937, en Estados Unidos. Lograron fabricar tiras largas de acero en caliente de manera continua, lo que significó a nivel mundial una nueva tecnología, no solo para la creación de bandejas portacables, sino para varias áreas, ya sea la industria naval, la automotriz o la de electrodomésticos.

Por otra parte,  la industria de los cables en argentina empezó en los años 1917, y se puso en marcha en 1921. Mucho después, con la necesidad de utilizar cables en la industria de la construcción, se fundaron las primeras fábricas de producción de bandejas portacables, que ocurrió aproximadamente en 1950.  En el año 1952 se fundó  INDUSTRIA BASICA S.A. que sería  la primera fábrica metalúrgica que incluiría el trabajo de bandejas portacables, bajo la marca conocida como Nuban.

Las primeras producciones de bandejas fueron con acero, pero no perforadas. Esto ocurrió principalmente por que las construcciones no requerían cables que fueran pesados para la industria de la construcción.  Tiempo después, se crearon las bandejas portacables perforadas. Estas tendrían las características de  tener bajo impacto visual, pueden utilizarse en casos en donde la carga no es extrema, y sus perforaciones dan ventilación a los cables, evitando el sobrecalentamiento. A pesar de estas características, su principal problema fue la corrosión del acero como tal.

Este material, por el uso del acero tiene un impacto ambiental alto. Este material tiene la característica de no ser biodegradable. Además de que el gasto de energía en la construcción es alto, ya que abarca desde la fusión del acero, hasta su proceso de inmersión en un baño de zinc.  Para reducir este tipo de impacto ambiental  este material se puede ser reciclado. Puede ser fundido nuevamente y usarse en otros objetos tales como,  un automóvil, por ejemplo.

Definición ciencia

Se compone principalmente de acero, con aleaciones de silicio (1.6%) y  aluminio , en donde el silcio cumple la función de endurecer la fusión del acero, mientras que el Aluminio se utiliza  únicamente como desoxidante. Su composición de zinc es del 42% aproximadamente, lo que evita  su corrosión a futuro. (10)

Procesamiento

El proceso se inicia en la compra de chapas de acero, una vez obtenida se inicia la fabricación.  Esta chapa se traslada  por una máquina prensada en donde se  perfora cada bandeja en fila, se agujerea lo que se llama el tramo “recto” de la bandeja, y por otra parte se perforan las alas. Estas dos partes van a ser juntadas por una máquina llamada “conformadora”, en donde ya se unen y forman en su totalidad una bandeja.

Ya listo el producto, se lo  prepara para lo que será el proceso de galvanizado.  Estas piezas se funden en cubas,  con  zinc a 440°C aproximadamente.  Se sumergen en estas fosas, en un tiempo que varía según cada pieza, es decir, cada objeto debe llegar a la temperatura que tiene el zinc. Este proceso proporciona resistencia hacia el objeto de poder sufrir algún tipo de corrosión galvánica a futuro. Luego de este proceso de bañado, se dejan secar las bandejas al aire libre.

Propiedades

TIPO DE PROPIEDADPROPIEDAD O CARACTERÍSTICA VALOR TÍPICO
Físico – químicaDensidad 1.8 – 2.0 gr/cm³
Resistencia ambiental I  B  I C  I D  I E  I  F I  G
MecánicaResistencia a tracción 36 kg/mm2.
Resistencia al impacto5 julios
Limite Elástico30 kg/mm2
Térmica Resistencia al fuego (DIN 4102-1) Hasta 200°C
NORMATÍTULO 
IEC 61537Conducción de cables. Sistemas de bandejas y de bandejas de escalera
AEA 90364Reglamentación para la ejecución de instalaciones eléctricas en inmuebles
VEI 826-15-08Bandeja de cables (cable tray en inglés)

Puesta en obra

Proveedores

DISTRIBUIDOR LOCAL FORMATO NOMBREORIGENMARCA
http://www.samet.com.ar/ Ancho 300 mm- Chapa 0.7 mmSmarTrayArgentina(Samet)

http://www.stucchi.com.ar
/
Tramo recto 300 mm- Alas 50 mmBandeja PerforadaArgentinaStucchi

http://nuban.com.ar/band ejas-portacables/
Tramo Recto 3.000 mm y 2.000 mm de largoNubanclipArgentinaNuban

http://www.cabletraysman
ufacturers.in/perforatedcable-trays.html
Alturas:  25 mm -125 mm  Anchuras:  100 mm a  1000
mm
Cable Tray –
Perforated
Type
IndiaUniversal

Bibliografía

Chapa de acero Corten

Síntesis

El Acero Corten es una aleación de Acero con Níquel, Cromo, Cobre y Fósforo, a la que se le crea una capa de óxido que detiene el avance de la corrosión hacia el interior del material. Para su fabricación, primero se limpia la chapa con un disolvente para aceites y grasas para que el óxido quede más aferrado a la chapa, y se inicia el proceso de oxidación aplicando un ácido. Se deja secar 45 min, en los que veremos cómo la chapa ya empieza a oxidarse, y se vuelve a aplicar. Pasados otro 45 min, se le pasa un rodillo para eliminar cualquier exceso. Se vende en chapas de 1000mm, 1250mm y 1500mm de ancho, 2000mm, 3000mm y 6000mm de largo, y espesores estándar de 1.5mm a 90mm. (1) Se utiliza en construcciones, esculturas, fachadas de edificios, puertas, tuberías jardinerías, chimeneas, industrias cimentarías, construcciones metálicas, puentes, etc.

Contexto histórico, social y económico

Originalmente se denominaba “Weathering Steel” (acero resistente a la intemperie) y fue creado con el objetivo de evitar la necesidad de pintar el acero para evitar la corrosión. En 1933, la United States Steel Corporation la patentó con el nombre de “acero Cor-Ten” y lo lanzó como un acero de baja aleación con 0,20,5 % de cobre, 0,5-1,5 % de cromo y 0,1- 0,2 % de fósforo. A lo largo de los años las cantidades de sus componentes han ido variando con el objetivo de mejorar sus capacidades mecánicas. 

El acero Cor-ten surgió con el propósito de conseguir un acero resistente a la corriosión, sin la necesidad de aplicar pinturas u otros tratamientos. En la actualizada este material se aplica mayormente para la intemperie: se utiliza para fabricar jardineras, mobiliario urbano, esculturas, pérgolas, fachadas, cubieras, puentas y vallas de todo tipo. También se usa ampliamente en la fabricación de contenedores marítimos. (3) Durante la década del ’30, Estados Unidos (y todo el mundo) estaba sufriendo de La Gran Depreción, que fue una gran crisis financiera, originada en los Estados Unidos debido a la caída de la bolsa de valores de Nueva York. El principal cambio que produjo la utilización de este material, fue que ya no se necesitaba aplicar pinturas anticorrosivas al acero para poder emplearlo en la intemperie, y también que no necesita mantenimiento.

Debido al gran uso que se le da al acero, se extraen 1500 millones de toneladas, lo que produce gran erosión natural y se hace un alto consumen energético para su extracción. Además para su traslado a la planta de procesado, se consume mucho combustible, y se emiten gases nocivos para el medio ambiente y la atmósfera. Sin embargo, el proceso de fabricación del acero requiere grandes cantidades de chatarra, lo que lo hace un material altamente reciclable, y disminuye en gran proporción el impacto ambiental, ya que cada vez que se recicla el acero, se evitan emisiones de dióxido de carbono equivalentes a 1.5 veces su propio peso.

Definición ciencia

El acero Cor-ten es una aleación de Acero con Níquel (0,4 %), Cromo (0,5-1,5 %), Cobre (0,2-0,5 %) y Fósforo (0,1- 0,2 %) a la que, a través de un proceso de oxidación, se le genera una capa de óxido que evita que la corrosión ingrese al interior del material, evitando así la necesidad de utilizar pinturas anticorrosivas.

Procesamiento

La fabricación de acero se puede hacer utilizando materias primas naturales (extrayendo arrabio de la naturaleza), o mediante materiales reciclados (se recoge el acero de los desechos y se convierten en barras de acero). Luego se coloca el acero en un recipiente, donde se funde, y se hecha a un horno a 1600 grados, y se licúa. El acero fundido pasa del horno a un caldero de colada donde se le introducen aditivos para conseguir el tono de acero correcto. Se coloca el acero fundido en moldes, donde se enfrían y se endurecen rápidamente, produciendo barras, que posterior mente serán cortadas a la medida con gas, para luego ser calentadas nuevamente en un horno a 1200 °C para ser aplanadas.

Luego de conseguir las chapas de acero, mediante el proceso anteriormente explicado, se limpian las chapas con un disolvente para aceites y grasas, y se le aplica un ácido para iniciar la oxidación. Se deja secar 45 min, en los que veremos cómo la chapa ya empieza a oxidarse, y se vuelve a aplicar. Pasados otro 45 min, se le pasa un rodillo para eliminar cualquier exceso.

Propiedades

TIPO DE PROPIEDADPROPIEDAD O CARACTERÍSTICA VALOR TÍPICO
Físico – químicaDensidad 7850 kg/m³ (8)
Resistencia ambiental ¹*  A  I  B  I  C  I  D  I  E  I  F  I  G
MecánicaLímite de elasticidad345 MPa (9)
 Fuerza de Tensión485 MPa (9)
Térmica Punto de fusión1.375 °C (8)
Punto de ebullición3.000 °C (8)
Óptica, Acústica, entre otrasMaterial opaco
Alta conductividad eléctrica
Reciclable
NORMATÍTULO 
IRAM 630Chapas y flejes de acero ferrítico al cromo. Resistentes a la corrosión.
UNE-EN 10088-2:2015Condiciones técnicas de suministro para chapas y bandas de acero resistentes a la corrosión para usos generales.
UNE-EN 10025-5Productos laminados en caliente de aceros para estructuras. Condiciones técnicas de suministro de los aceros estructurales con resistencia mejorada a la corrosión atmosférica

Puesta en obra

Proveedores

DISTRIBUIDOR LOCAL FORMATO NOMBREORIGENMARCA
info@intes.es
https://intes.es/
Chapas, bobinas, tubos, perfiles y platinas.Acero CortenEspañaINTES
info@sintecrom.com.ar
http://www.sintecrom.com.ar/
Hojas o rollos de espesores de 0,6 mm, 0,9 mm y 1,2 mm, y ancho máximo de 1250 mm.Acero CortenArgentinaSINTECROM
–  ventas@mtds.cl
http://www.metaldesign.cl/ind ex.php
1,5 mm a 10 mm de espesor, medida 1.50
x 3.00
Acero CortenChileMETALDESIG
acerocortena@gmail.com
http://www.solucionesperdura bles.com.ar/index.html

Carpintería de obra, decoración de
interiores y exteriores, revestimientos.
Acero CortenArgentinaSP Soluciones Perdurables

Bibliografía